TY - JOUR TT - Finite Element Analysis of the Dynamic Behavior of Model Porous Concretes with Circular Aggregates AU - Ağar Özbek, Ayda Şafak AU - Weerheıjm, Jaap AU - Van Breugel, Klaas PY - 2017 DA - December Y2 - 2017 DO - 10.17482/uumfd.350493 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ University WT - DergiPark SN - 2148-4155 SP - 277 EP - 290 VL - 22 IS - 3 KW - Boşluklu beton KW - Açık sonlu eleman analizi KW - Dinamik analiz N2 - Porous concreteis a special type of concrete that includes a high amount of meso-size airpores and is formed by the aggregate particles assembled by a thin layer ofcement paste. In the scope of a research project, having an objective ofdesigning enhanced strength porous concretes to be used in safety applications,dynamic properties of porous concretes were analyzed with finite elementmethod. In the analyses, porous concretes with circular aggregates wereanalyzed by using the explicit direct integration technique implemented inABAQUS/Explicit. Based on the analysis results, stress wave propagation speedsof porous concretes and a plain concrete were estimated based on stresscontours. The numerically estimated values were found to be very close to thereference values in literature and the experimental results. On the other hand,the impact strengths obtained for two model porous concretes having differentaggregate sizes were found to be nearly equal. When the computeddamage distributions and stress concentrations were examined, it was seen thatunder dynamic loading, the fragments formed were approximately at the size ofaggregates. Therefore, it is concluded that the fragment size in porousconcretes is mainly determined by the size of the aggregates incorporated inthe mixture. CR - Agar Ozbek, A.S.,Weerheijm, J.,Schlangen, E., Breugel, van K. (2013), Dynamic behavior of porous concretes under drop weight impact testing, Cement and Concrete Composites, 39: 1-11, doi:10.1016/j.cemconcomp.2013.03.012. CR - British Standards Institution (1997), Falsework performance requirements and general design, Draft prEN 12812, London, U.K. CR - Chen, Z., Shin, M., Adrawes, B. (2012), Numerical Simulation of Prestressed Concrete Crosstie and Fastening System, PCI Convention. CR - Chindaprasirt P., Hatanaka S., Chareerat T., Mishima N., Yuasa Y. (2008), Cement paste characteristics and porous concrete properties, Construction and Building Materials, 22(5): 894 901, doi:10.1016/j.conbuildmat.2006.12.007. CR - Chindaprasirt, P., Hatanaka, S., Mishima, N., Yuasa, Y., Chareerat, T. (2009), Effects of binder strength and aggregate size on the compressive strength and void ratio of porous concrete, International Journal of Minerals, Metallurgy , Materials, 16(6): 714-719, doi:10.1016/S1674-4799(10)60018-0. CR - Chopra, A.K. (2000), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall. CR - Dann, J.H., Dann J.J. (2012), CK-12 Basic Physics, CK-12 Foundation. CR - Deo, O. , Neithalath, N. (2010), Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features, Materials Science and Engineering: A, 528(1): 402-412, doi:10.1016/j.msea.2010.09.024. CR - Deutsches Institut für Normung (1982), Falsework calculation, design and construction DIN 4421:1982, Beuth Veriag GmbH, Berlin, Germany. CR - Elmer,W. VII, Taciroglu, E., McMichael, L. (2012), Dynamic Strength Increase of Plain Concrete From High Strain Rate Plasticity with Shear Dilation, International Journal of Impact Engineering, 45: 1–15, doi:10.1016/j.ijimpeng.2012.01.003. CR - Farooq, U., Gregory, K. (2010), Explicit Dynamic Simulation of Drop-Weight Low Velocity Impact on Carbon Fibrous Composite Panels, ARPN Journal of Engineering and Applied Sciences, 5(3): 50-61, doi:10.1.1.608.6986. CR - Ghafoori N, Dutta S. (1995), Building and nonpavement applications of no-fines concrete, Journal of Materials in Civil Engineering, 7(4): 286-9, doi:10.1061/(ASCE)0899-1561(1995)7:4(286). CR - Ghafoori N., Dutta S. (1995), Development of no-fines concrete pavement applications, Journal of Transport Engineering; 121: 283-8, doi:10.1061/(ASCE)0733-947X(1995)121:3(283). CR - Gorst, N.J.S., Williamson, S.J., Pallett, P.F. and Clark, L.A (2003), Friction in temporary works, Research Report, University of Birmingham, U.K. CR - Grondzik, W.T, Kwok, A.G., Stein, B., Reynolds, J.S. (2010), Mechanical and Electrical Equipment for Buildings, Wiley. CR - Hillerborg, A., Modeer M., Petersson P. E. (1976), Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, 6: 773–782, doi:10.1016/0008-8846(76)90007-7. CR - Huang, C.C., Wu, T.Y. (2009), A Study on Dynamic Impact of Vertical Concrete Cask Tip-over Using Explicit Finite Element Analysis Procedures, Annals of Nuclear Energy, 36(2): 213–221, doi:10.1016/j.anucene.2008.11.014. CR - Huebner, K.H., Dewhirst, D.L., Smith, D.H. and Byrom T.G. (2001), The Finite Element Method for Engineers, Wiley. CR - Jankowiak, T., Lodygowski T. (2005), Identification of Parameters of Concrete Damage Plasticity Constitutive Model, Foundations of Civil and Environmental Engineering, 6: 53-69. CR - Lee, J., Fenves G.L. (1998), A Plastic Damage Model for Cyclic Loading of Concrete Structures, ASCE Journal of Engineering Mechanics, 124: 892–900, doi:10.1061/(ASCE)0733-9399(1998)124:8(892). CR - Lubliner, J., Oliver, J., Oller, S., Oñate, E. (1989), A Plastic-Damage Model for Concrete, International Journal of Solids and Structures, 25(3): 229-326, doi:10.1016/0020-7683(89)90050-4. CR - Marolf A, Neithalath N, Sell E, Wegner K, Weiss J, Olek J. (2004), Influence of aggregate size and gradation on the acoustic absorption of enhanced porosity concrete, ACI Materials Journal, 101(1): 82-91, doi:10.14359/12991. CR - Noh, G., Bathe K.J. (2013), An Explicit Time Integration Scheme for the Analysis of Wave Propagations, Computers and Structures, 129: 178–193, doi:10.1016/j.compstruc.2013.06.007. CR - Nolan, D. P. (2010), Handbook of Fire and Explosion Protection Engineering Principles, Elsevier, UK. CR - Schön, J.H. (2015), Physical Properties of Rocks : Fundamentals and Principles of Petrophysics, Elsevier. CR - Siad, L., Ouali, M.O. , Benabbes, A. (2008), Comparison of Explicit and Implicit Finite Element Simulations of Void Growth and Coalescence in Porous Ductile Materials, Materials and Design, 29(2): 319–329, doi:10.1016/j.matdes.2007.02.003. CR - Simulia_1 (2013), ABAQUS Analysis User’s Manual 6.13. CR - Sun J.S., Lee, K.H., Lee, P.H. (2000), Comparison of Implicit and Explicit Finite Element Methods for Dynamic Problems, Journal of Materials Processing Technology, 105(1-2): 110-118, doi:10.1016/S0924-0136(00)00580-X. CR - Susila, E., Hryciw, R.D. (2003), Large Displacement FEM Modelling of the Cone Penetration Test (CPT) in Normally Consolidated Sand, International Journal for Numerical and Analytical Methods in Geomechanics, 27(7): 585–602, doi: 10.1002/nag.287. CR - Tarque, N.S. (2011), Numerical modelling of the seismic behavior of adobe buildings, PhD Thesis, University of Pavia, Italy. CR - Wu, S.R., Gu, L. (2012), Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics, Wiley. CR - Yang J, Jiang G. (2003), Experimental study on properties of pervious concrete, Cement and Concrete Research, 33(3): 381-6, doi:10.1016/S0008-8846(02)00966-3. CR - Zhang, L. (2017), Engineering Properties of Rocks (Second Edition), Butterworth-Heinemann, ISBN: 978-0-12-802833-9 CR - Zhao J. (2009) Rock Mechanics for Civil Engineers Lecture Notes, Swiss Federal Institute of Technology, Zürich, Switzerland. UR - https://doi.org/10.17482/uumfd.350493 L1 - https://dergipark.org.tr/en/download/article-file/407499 ER -