TY - JOUR T1 - H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr ve Ti-V-Fe KATALİZÖRLERİ TT - Ti-V-Cr and Ti-V-Fe Catalysts for H2S Selective Oxidation to Elemental Sulfur AU - Taşdemir, H. Mehmet PY - 2018 DA - August Y2 - 2018 DO - 10.17482/uumfd.358520 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ University WT - DergiPark SN - 2148-4155 SP - 167 EP - 182 VL - 23 IS - 2 LA - tr AB - Bu çalışmada kompleksleştirme yöntemiyle eşmolaroranda Ti-V-Fe ve Ti-V-Cr katalizörleri sentezlenmiş ve H2S’ünseçici oksidasyon reaksiyonuyla elementel kükürt eldesindeki aktiviteleriincelenmiştir. Katalizörlerin katalitik aktiviteleri dolgulu kolon reaktörsisteminde farklı sıcaklık (200°C, 250°C, 300°C) ve stokiyometrik gaz (O2/H2S:0,5)bileşiminde incelenmiştir. Katalizörlerin yapısal özellikleri N2adsorpsiyon-desorpsiyon, XRD, TPR, SEM-EDS analizleri ile belirlenmiştir.Sentezlenen katalizörlerin mezogözenekli yapıya sahip olduğu tespit edilmiştir.Ti-V-Cr katalizörünün kristal yapısı TiO2’in rutile fazı ve Cr2O3bileşiklerinden oluşurken, Ti-V-Fe katalizörü kompleks bir kristal yapısergilemiştir. Bu katalizörün yapısında Fe2TiO5, V2O5,FeV2O4, rutile TiO2 ve Fe2O3bileşikleri görülmüştür. Sentezlenen her iki katalizörle de 250°C reaksiyonsıcaklığında % 100 H2S dönüşümü elde edilmiştir. Reaksiyonsıcaklığındaki artış ve azalış katalizörlerde elde edilen H2Sdönüşümünde azalmaya sebep olmuştur. Bunun yanı sıra çalışılan tüm şartlardaher iki katalizörle de oldukça yüksek (≥% 97) elementel kükürt seçiciliği eldeedilmiştir. Özellikle 200°C sıcaklıkta,yapısında kompleks bileşikleri içeren Ti-V-Fe katalizörü ile (% 73 H2Sdönüşümü) Ti-V-Cr katalizörüne kıyasla (% 51 H2S dönüşümü) dahayüksek dönüşüm elde edilmiştir. KW - Katalizör KW - H2S KW - Seçici oksidasyon KW - elementel kükürt N2 - In this study, Ti-V-Fe and Ti-V-Cr catalystswere synthesized by complexation method and their activities were investigatedfor H2S selective oxidation reaction to elemental sulfur. Structuralproperties of the catalysts were determined by N2adsorption-desorption, XRD, TPR, SEM-EDS analyzes. According to the analysisresults, it has been found that the synthesized catalysts have a mesoporousstructure. Ti-V-Fe catalyst exhibits a complex crystal structure, while thecrystal structure of the Ti-V-Cr catalyst is comprised of the rutile phase ofTiO2 and Cr2O3 compounds. In this catalyststructure, Fe2TiO5, V2O5, FeV2O4,rutile TiO2 and Fe2O3 compounds were observed.The catalytic activities of the catalysts were investigated in a packed columnreactor system at different temperatures (200°C, 250°C, 300°C) andstoichiometric gas composition (O2/H2S:0.5). 100% H2Sconversion was obtained at 250°C reaction temperature with both catalystssynthesized. The increase and decrease in the reaction temperature led to adecrease in the conversion of H2S obtained with the catalysts due tothe increase in sulfur deposition in the catalyst structure. In addition, underall conditions studied, elemental sulfur selectivity was high (≥ 97%) with bothcatalysts. Espe,cially at 200°C, a higher conversion was obtained with Ti-V-Fe (73%H2S conversion) catalyst which has complex compounds in thestructure compared to Ti-V-Cr catalyst (51% H2S conversion). CR - Brundle, C.R., Evans, C.A. (1992) Materials characterization series, In: I.E. Wachs (ed.), Characterization of catalytic materials, Boston. CR - Caceres, C.V., Fierro, J.L., Agudo, A.L., Soria, J. (1990) Effect of support on the surface characteristics of supported molybdena catalysts, Journal of Catalysis, 122,113-125. https://doi.org/10.1016/0021-9517(90)90265-L CR - Chun, S.W., Jang, J.Y., Park, D.W., Woob, H.C., Chung, J.S. (1998) Selective oxidation of H2S to elemental sulfur over TiO2/SiO2 catalysts. Applied Catalysis B: Environmental, 16, 235–243. https://doi.org/10.1016/S0926-3373(97)00078-7 CR - Eslek, D.D., Yasyerli, S. (2009) Selectivity and stability enhancement of iron oxide catalyst by ceria incorporation for selective oxidation of H2S to sulfur, Industrıal & Engineering Chemistry Research, 48, 5223–5229. DOI: 10.1021/ie8017059 CR - Ilieva, L.I., Andreeva, D.H. (1995) Investigation of the chromium oxide system by means of temperature-programmed reduction, Thermochim Acta, 265,223-31. https://doi.org/10.1016/0040-6031(95)98772-Q CR - Jiang, F., Wei, X., Niu, L., Xiao, G. (2013) Vanadium-chromium oxide: Effective catalysts for ammoxidation of 3-picoline, Advanced Materials Research, 634-638, 624-627. DOI: 10.4028/www.scientific.net/AMR.634-638.624 CR - Jung, S.J., Kim, M.H., Chung, J.K., Moon, M.J., Chung, J.S., Park, D.W., Woo, H.C. (2003) Catalytic oxidation of H2S to elemental sulfur over mesoporous Nb/Fe mixed oxides, Studies in Surface Science and Catalysis, 146, 621–624. https://doi.org/10.1016/S0167-2991(03)80460-3 CR - Keller, N., Huu, C.P., Ledoux, M.J. (2001) Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dewpoint, Applied Catalysis A: General, 217, 205–217. https://doi.org/10.1016/S0926-860X(01)00601-9 CR - Kim, M., Ju, W.D., Kim, K.H., Park, D.W., Hong, S.S. (2006) Selective oxidation of hydrogen sulfide to elemental surfur and ammonium thiosulfate using VOx/TiO2 catalysts, Studies in Surface Science and Catalysis, 159, 225-228. DOI:10.1016/S0167-2991(06)81574-0 CR - Kirk-Otmer. (1992) Encyclopedia of Chemical Technology, 4.Basım, New York. CR - Kohl, A.L., Nielsen, R.B. (1997) Gas Purification, 5.Basım, Texas. CR - Li, K.T., Wu, K.S. (2001) Selective oxidation of hydrogen sulfide to Sulfur on vanadium-based catalysts containing tin and antimony, Industrial Engineering Chemistry Research, 40, 1052-1057. DOI: 10.1021/ie0007015 CR - Li, K.T., Huang, C.H. (2006) Selective oxidation of hydrogen sulfide to sulfur over LaVO4 catalyst: Promotional effect of antimony oxide addition, Industrial Engineering Chemistry Research, 45, 7096-7100. DOI: 10.1021/ie060384n CR - Li, K.T., Huang, C.H. (2011) Hydrogen sulfide oxidation on RE (RE = Sm, Y, La)–V–Sb catalysts: Effects of RE size and electronegativity, Catalysis Today, 174, 25–30. doi:10.1016/j.cattod.2011.03.070 CR - Li, K.T., Yen, C.S., Shyu, N.S. (1997) Mixed-metal oxide catalysts containing iron for selective oxidation of hydrogen sulfide to sulfur, Applied Catalysis A: General, 156, 117–130. https://doi.org/10.1016/S0926-860X(96)00417-6 CR - Liao, S.J., Chen, T., Miao, C.X., Yang, W.M., Xie, Z.K., Chen, Q.L. (2008) Effect of TiO2 on the structure and catalytic behavior of iron-potassium oxide catalyst for dehydrogenation of ethylbenzene to styrene, Catalysis Communication, 9, 1817-1821. https://doi.org/10.1016/j.catcom.2008.02.009 CR - Lowell, S., Shield,J. (1984) Powder surface area and porosity, 2. Basım, New York. CR - Marcilly, C., Courty, P., Delmon, B. (1970). Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous precursors, Journal of the American Ceramic Society, 53, 56-57. DOI: 10.1111/j.1151-2916.1970.tb12003.x CR - Nagaraju, P., Lingaiah, N., Balaraju, M., Sai Prasad, P.S. (2008) Studies on vanadium-doped iron phosphate catalysts for the ammoxidation of methylpyrazine, Applied Catalysis A: General, 339, 99–107. https://doi.org/10.1016/j.apcata.2007.09.032 CR - Palma, V., Barba, D. (2014) Low temperature catalytic oxidation of H2S over V2O5/ CeO2 catalysts, Int. J. of Hydrogen Energy, 39, 21524-21530. https://doi.org/10.1016/j.ijhydene.2014.09.120 CR - Park , D.W., Park , B.K., Park, D.K, Woo, H.C. (2002) Vanadium-antimony mixed oxide catalysts for the selective oxidation of H2S containing excess water and ammonia. Applied Catalysis A: General, 223, 215–224. https://doi.org/10.1016/S0926-860X(01)00760-8 CR - Shin, M.Y., Park, D.W., Chung, J.S. (2000) Vanadium-containing catalysts for the selective oxidation of H2S to elemental sulfur in the presence of excess water, Catalysis Today, 63, 405–411. https://doi.org/10.1016/S0920-5861(00)00485-5 CR - Sing, K.S.W, Haul, R.A.W, Pierotti, R.A., Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 57, 603–619. DOI: https://doi.org/10.1515/iupac.57.0007 CR - Smith, D.K., Mrose, M.E., Berry, L.G., Bayliss, P. (1974) Selected Powder Diffraction Data for Minerals, 1.Basım, Pennsylvania. CR - Tasdemir, H.M., Yasyerli, S., Yasyerli, N. (2015) Selective catalytic oxidation of H2S to elemental sulfur over titanium based Ti-Fe, Ti-Cr and Ti-Zr catalysts, Int. J. of Hydrogen Energy, 40, 9989-10001. http://dx.doi.org/10.1016/j.ijhydene.2015.06.056 CR - Taşdemir, H.M., Yağızatlı, Y., Yaşyerli, S., Yaşyerli, N., Doğu, G. (2017) Ce-O catalysts for elemental sulfur production via selective oxidation of H2S, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 831-841. DOI: 10.17341/gazimmfd.337632 CR - Yasyerli, S., Dogu, G., Ar, İ., Dogu, T. (2003) Breakthrough analysis of H2S removal on Cu-V-Mo, Cu-V and Cu-Mo mixed oxides, Chemical Engineering Communication, 190, 1055-1072, DOI: 10.1080/00986440390207602 CR - Yasyerli, S., Dogu, G., Ar, İ., Dogu, T. (2004) Dynamic analysis of removal and selective oxidation of H2S to elemental sulfur over Cu–V and Cu–V–Mo mixed oxides in a fixed bed reactor, Chemical Engineering Science, 59, 4001 – 4009. DOI: 10.1016/j.ces.2004.03.045 CR - Yasyerli, S., Dogu, G., Dogu, T. (2006) Selective oxidation of H2S to elemental sulfur over Ce–V mixed oxide and CeO2 catalysts prepared by the complexation technique. Catalysis Today, 117, 271–278. https://doi.org/10.1016/j.cattod.2006.05.030 CR - Zhang, X., Tang, Y., Qu, S., Da, J., Hao, Z. (2014) H2S-selectşve catalytic oxidation: Catalysts and processes, ACS Catalysis, 5, 1053-1067. DOI: 10.1021/cs501476p CR - Zhu, H., Qin, Z., Shan, W., Shen, W., Wang, J. (2004) Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, Journal of Catalysis, 225, 267-277. https://doi.org/10.1016/j.jcat.2004.04.006 UR - https://doi.org/10.17482/uumfd.358520 L1 - https://dergipark.org.tr/en/download/article-file/555556 ER -