TY - JOUR TT - Data mining aproach for prediction of fruit color properties AU - Demir, Bünyamin AU - Gürbüz, Feyza AU - Eski, İkbal AU - Kuş, Zeynel Abidin PY - 2018 DA - January DO - 10.17097/ataunizfd.365231 JF - Atatürk Üniversitesi Ziraat Fakültesi Dergisi PB - Ataturk University WT - DergiPark SN - 1300-9036 SP - 37 EP - 43 VL - 49 IS - 1 KW - Elma KW - hue açısı KW - L*a*b* KW - renk uzayı N2 - Color is an important feature that dictates the quality and consumer preferences of many fresh fruits andvegetables. In color measurement of fruits, the CIE L*a*b* color space is widely used since it is a uniform color scale. In thisstudy, raw data for the color features of apple varieties were divided into two parts as test and train data in the first stage, analyseswere performed on train data and tests were performed on test data. The rules obtained by applying the Find laws algorithm wereused to estimate the color index (CI), hue angle (h *) and Chroma (C *) values. In the second stage, raw data were classified byStrict and Liberal options of cluster analysis. Find Laws algorithm was applied to each cluster and 7 different prediction ruleswere obtained for CI, h*and C* parameters. R2values of the rules were compared and the rules with the most accurate outcomeswere identified.: CR - Amir Ahmad, Sarosh Hashmi, K-Harmonic means type clustering algorithm for mixed datasets, Applied Soft Computing 48 (2016) 39–49. CR - A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Inc., 1988. CR - Giuliano Armano, Mohammad Reza Farmani, Multiobjective clustering analysis using particle swarm optimization, Expert Systems With Applications 55 (2016) 184–193. CR - Han, J., Kamber, M. (2000). Data mining: concepts and techniques, the Morgan Kaufmann Series in data management systems. Morgan Kaufmann. CR - Cheng, H. , Yang, S. , & Cao, J. (2013). Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks. Expert Systems with Applications, 40 (4), 1381–1392. CR - Kao, Y.-T., Zahara, E., Kao, I.W. (2008). A hybridized approach to data clustering. Expert Systems with Applications, 34 (3), 1754–1762. doi: 10.1016/j.eswa.2007. 01.028. CR - Leung, Y., Zhang, J. S., Xu, Z. B. (2000). Clustering by scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (12), 1396–1410. doi: 10.1109/34.895974 . CR - Nguyen, C. D., Cios, K. J. (2008). Gakrem: a novel hybrid clustering algorithm. Information Sciences, 178 (22), 4205–4227. doi: 10.1016/j.ins.2008.07.016. CR - Qiu, H., Xu, Y., Gao, L., Li, X., Chi, L. (2016). Multi-stage design space reduction and metamodeling optimization method based on self-organizing maps and fuzzy clustering. Expert Systems with Applications, 46, 180–195. CR - Saha, S., Alok, A. K., Ekbal, A. (2016). Brain image segmentation using semi- supervised clustering. Expert Systems with Applications, 52, 50–63. CR - Sahoo, A. K., Zuo, M. J., & Tiwari, M. (2012). A data clustering algorithm for stratified data partitioning in artificial neural network. Expert Systems with Applications, 39 (8), 7004–7014. CR - Thong, N. T., et al. (2015). HIFCF: An effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy recommender systems for medical diagnosis. Expert Systems With Applications, 42 (7), 3682–3701. CR - Feyza Gürbüz, Lale Özbakır, Hüseyin Yapıcı, 2011. Data mining and preprocessing application on component reports of an airline company in Turkey. Expert Systems with Applications, 38, 6618–6626. CR - User Manuel of PolyAnalyst 6.5, April 2007. UR - https://doi.org/10.17097/ataunizfd.365231 L1 - https://dergipark.org.tr/en/download/article-file/402289 ER -