TY - JOUR TT - Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi AU - Akyürek, Turgut PY - 2013 DA - May JF - Cankaya University Journal of Science and Engineering JO - CUJSE PB - Cankaya University WT - DergiPark SN - 2564-7954 VL - 10 IS - 1 KW - Damage tolerance KW - fatigue crack growth KW - life KW - cycle counting technique N2 - In this paper, within the context of a study on the effects of the parameterswhich are important for damage tolerance, upon damage tolerance life, cycle countingtechniques are assessed while looking for an optimum solution to design of systems on thebasis of damage tolerance, through analysing the effects of load cycle counting techniqueon fatigue crack growth life estimations. CR - [1] J. Ad´amek, H. Herrlich, J. Rosicky and W. Tholen, Weak factorization systems and topological functors, Applied Categorical Structures 10 (2002), 237–249. CR - [2] J. Adam´ek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, 1990. http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf CR - [3] M. Baran, Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures 10 (2002), 403–415. CR - [4] H. L. Bentley and H. Herrlich, Merotopological spaces, Applied Categorical Structures 12 (2004), 155–180. CR - [5] H. L. Bentley and E. Lowen-Colebunders, Initial morphisms versus embeddings, Applied Categorical Structures 12 (2004), 361–367. CR - [6] L. M. Brown, R. Ert¨urk and S¸. Dost, Ditopological texture spaces and fuzzy topology, II. Topological considerations, Fuzzy Sets and Systems 147 (2004), 201–231. CR - [7] G. Castellini, Categorical Closure Operators, Birkh¨auser, Boston 2003. CR - [8] G. Castellini, Connectedness with respect to a closure operator, Applied Categorical Structures 9 (2001), 285–302. CR - [9] M. M. Clementino, On categorical notions of compact objects, Applied Categorical Structures 4 (1996), 15–29. CR - [10] M. M. Clementino and D. Hofmann, Topological features of lax algebras, Applied Categorical Structures 11 (2003), 267–286. CR - [11] M. M. Clementino and W. Tholen, Tychonoff’s theorem in a category, Proceedings of the American Mathematical Society 124 (1996), 3311–3314. CR - [12] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers, Netherlands 1995. CR - [13] D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaestiones Mathematicae 11 (1988), 323–337. CR - [14] T. H. Fay, Weakly hereditary initial closure operators, Applied Categorical Structures 8 (2000), 415–431. CR - [15] T. H. Fay and S. V. Joubert, Isolated submodules and skew fields, Applied Categorical Structures 8 (2000), 317–326. CR - [16] J. Fillmore, D. Pumpl¨un and H. R¨ohrl, On N-summations, I, Applied Categorical Structures 10 (2002), 291–315. CR - [17] W. G¨ahler, A. S. Abd-Allah and A. Kandil, On extended fuzzy topologies, Fuzzy Sets and Systems 109 (2000), 149–172. CR - [18] E. Giuli and W. Tholen, Openness with respect to a closure operator, Applied Categorical Structures 8 (2000), 487–502. CR - [19] S. N. Hosseini and S. Sh. Mousavi, A relation between closure operators on a small category and its category of presheaves, Applied Categorical Structures 14 (2006), 99–110. CR - [20] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, A First Introduction to Topos Theory, Springer-Verlag New York Inc. 1992. CR - [21] M. V. Mielke, Final lift actions associated with topological functors, Applied Categorical Structures 10 (2002), 495–504. UR - https://dergipark.org.tr/en/pub/cankujse/article/368996 L1 - https://dergipark.org.tr/en/download/article-file/387485 ER -