TY - JOUR T1 - Beyond the Writing Aspect of Argument-Driven Inquiry: Investigating Students’ Cognitive and Affective Expectations TT - Argümantasyon Tabanlı Sorgulayıcı Araştırma Yönteminin Yazmaya Etkisinin Ötesinde: Öğrencilerin Bilişsel ve Duyuşsal Beklentilerinin İncelenmesi AU - Çetin, Pınar Seda AU - Eymur, Guluzar PY - 2018 DA - February DO - 10.14686/buefad.376998 JF - Bartın University Journal of Faculty of Education JO - BUEFAD PB - Bartin University WT - DergiPark SN - 1308-7177 SP - 94 EP - 110 VL - 7 IS - 1 LA - en AB - Thepurpose of the present study was to investigate whether pre-serviceteachers’ cognitive and affective expectations were met after participation oflab investigations that were designed based on the ADI instructional model. Basedon Novak’ theory of learning, when the students get responsibilities to connectnew knowledge with existing one, the students stand active role in generatingknowledge through experiences. Novak categorized these human experiences ascognitive (thinking), affective (feeling), and psychomotor (doing). Thesuccessful consolidation of the cognitive, affective and psychomotorexperiences then result in meaningful learning. In order to determine whetherthe cognitive and affective expectations of pre-service teachers are fulfilledby their experiences in a science laboratory course, weak experimental designwas utilized in this study. Third grade pre-service science teachers attendedADI activities as a part of their regular course through 11 weeks. Through ADIactivities pre- service teachers had a chance to engage variety of scientificactivities such as designing investigations, arguing from evidence,writing scientific reports, and critically evaluating peers' reports. Theresults of the study showed that, the ADI instructional model was able tomeet pre-service teachers’ expectations especially in cognitive dimension. KW - Argument-Driven Inquiry KW - Laboratory Instruction N2 - Bu çalışmanın amacı, Argümantasyon Tabanlı Sorgulayıcı Araştırma (ATSA) yöntemine göre tasarlanmış laboratuvar uygulamalarına katılan öğretmen adaylarının bilişsel ve duyuşsal beklentilerinin karşılanıp karşılanmadığını incelemektir. Novak’ın anlamlı öğrenme teorisine göre, anlamlı öğrenmenin gerçekleşmesi için, öğrencilerin konuyla ilgili ön bilgisinin olması, yeni bilginin öğrencilere anlamlı bir şekilde verilmesi ve öğrenme sürecinde öğrencilerin aktif olarak rol alması gerekir. Novak, insanların bu deneyimlerini bilişsel (düşünme), duyuşsal (hissetme) ve psikomotor (yapma) olmak üzere üçe ayırmıştır. Bu bilişsel, duyuşsal ve psikomotor deneyimlerin başarılı şekilde bütünleşmesi ise anlamlı öğrenme ile sonuçlanmaktadır. Bu çalışmada, öğretmen adaylarının fen laboratuvarındaki bilişsel ve duyuşsal beklentilerinin, deneyimleri tarafından karşılanıp karşılanmadığını Galloway ve Bretz (2015) tarafından geliştirilen Laboratuvarda Anlamlı Öğrenme Ölçeği ile belirlemek amacıyla zayıf deneysel desen kullanılmıştır. Üçüncü sınıf fen bilgisi öğretmen adayları 11 hafta boyunca düzenli derslerinin bir parçası olarak ATSA etkinliklerine katılmıştır. Bu etkinlikler aracılığıyla öğretmenler adayları, bilimsel bir araştırma tasarlama, delillere dayalı argüman üretme, bilimsel rapor yazma ve akranlarının raporlarını eleştirel olarak değerlendirme gibi çeşitli bilimsel etkinliklerde bulunma şansına sahip olmuşlardır. Çalışmanın sonuçları, ATSA öğretim yönteminin öğretmen adaylarının bilişsel ve duyuşsal boyutlardaki beklentilerini karşılayabildiğini göstermiştir. CR - Anderson, C. (2007). Perspectives on science learning. In S. K. Abell & N. Lederman (Eds.), Handbook of research in science education (pp. 3 – 30). Mahwah, NJ: Erlbaum. CR - Azizoğlu, N. ve Uzuntiryaki, E. (2006). Kimya laboratuvarı endişe ölçeği. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30, 55-62. CR - Bretz, S. L.(2001) Novak’s Theory of Education: Human Constructivism and Meaningful Learning. Journal of Chemical Education, 78, 107. CR - Bowen, C. V. (1999). Development and score validation of a chemistry laboratory anxiety instrument (CLAI) for college chemistry students. Educational Psychological Measurement, 59(1), 171-185 CR - Cooper, M., & Kerns, T. (2006). Changing the laboratory: Effects of a laboratory course on student attitudes and perceptions. Journal of Chemical Education, 83, 1356–1361 CR - Cetin, P.S., Metin, D., & Kaya, E.( 2016). Laboratuvar Uygulamalarında Yeni Bir Yaklaşım: Argüman Temelli Sorgulayıcı Araştırma (ATSA), Kırşehir Eğitim Fakültesi Dergisi, 17(2), 223-242. CR - Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12. CR - Domin, D. (1999). A review of laboratory instruction styles. Journal of Chemical Education, 76(4), 543–547. CR - Duschl, R., Schweingruber, H., & Shouse, A. (Eds.). (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press. CR - Eddy, R. M. (2000). Chemophobia in the college classroom: Extent, sources, and students characteristics. Journal of Chemical Education, 77(4), 514-517 CR - Figueiredo, M., Esteves, L., Neves, J., & Vicente, H.(2016) A data mining approach to study the impact of the methodology followed in chemistry lab classes on the weight attributed by the students to the lab work on learning and motivation. Chemistry Education Research and. Practice, 17, 156-171 CR - Galloway, K. R.; Bretz, S. L.(2015) Development of an Assessment Toolto Measure Students’ Meaningful Learning in the Undergraduate Chemistry Laboratory. Journal of Chemical Education, 92, 1149−1158. CR - Güneş, M. H., Şener, N., Topal Germi, N. ve Can, N. (2013). Fen ve teknoloji dersinde laboratuvar kullanımına yönelik öğretmen ve öğrenci değerlendirmeleri. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 20, 1-11 CR - Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics, 60, 440 – 454. CR - Hofstein, A. (2004). The laboratory in chemistry education; thirty years of experience with developments, implementation and research. Chemistry Education: Research and Practice, 5(3), 247-264. CR - Hofstein, A.,&Lunetta,V. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54. CR - Högström, P., Ottander, C., & Benckert, S. (2010). Lab work and learning in secondary school chemistry: the importance of teacher and student interaction. Research in Science Education, 40, 505-523. CR - Kaya, E. & Cetin, P. S (2012). Investigation of pre-service chemistry teachers’ chemistry laboratory anxiety levels. International Journal on New Trends in Education and Their Implications, 3(3), 90-98. CR - Obenland, C.A.; Kincaid, K.; Hutchinson, J.S.(2013). A General Chemistry Laboratory Course. Designed for Student Discussion Journal of Chemical Education 2013, 91, 1446-1450. CR - Novak, J. D. (2010) Learning, Creating, and Using Knowledge; Taylor & Francis Group: New York, NY CR - Novak, J. D. (1993) Human Constructivism: A Unification of Psychological and Epistemological Phenomena in Meaning Making. International Journal of Personal Construct Psychology, 6, 167−193. CR - Sampson, V. and Walker, J. (2012) Argument-Driven Inquiry as a way to help undergraduate students write to learn by learning to write in chemistry. International Journal of Science. Education, 34(10), 1443-1485 CR - Sampson, V., Enderle, P., Grooms, J., & Witte, S. (2013) Writing to learn and learning to write during the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas. Science Education 97(5), 643-670. CR - Scott, P. H., Asoko, H., & Leach, J. (2007). Students conceptions and conceptual learning in science. In S. K. Abell & N. Lederman (Eds.), Handbook of research in science education (pp. 31 – 56). Mahwah, NJ: Erlbaum. CR - Strimaitis, A. M., Southerland, S. A., Sampson, V. D., Enderle, P. J., & Grooms, J. (2017). The potential of ambitious instruction for fostering science for all: A comparative case study of biology laboratory instruction at two high schools. School Science and Mathematics, 117 (3- 4), 92 – 103. CR - Walker, J., Sampson, V., Grooms, J., Anderson, B., & Zimmerman, C.(2012) Argument-Driven Inquiry in undergraduate chemistry labs: The impact on students’ conceptual understanding, argument skills, and attitudes towards science, Journal of College Science Teaching, 41(4), 74-81. CR - Walker, J., & Sampson, V. (2013). Learning to argue and arguing to learn in science: Argument-Driven Inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course. Journal of Research Science Teaching, 50(50), 561-596 CR - Wallace, C., Hand, B., & Yang, E.-M. (2005). The science writing heuristic: Using writing as a tool for learning in the laboratory. In W. Saul (Ed.), Crossing borders in literacy and science instruction (pp. 375–398). Arlington,VA:NSTAPress CR - Wells, M., Hestenes, D., & Swackhamer, G. (1995). A modeling method for high school physics instruction. American Journal of Physics, 63(7), 606 – 619. UR - https://doi.org/10.14686/buefad.376998 L1 - https://dergipark.org.tr/en/download/article-file/430343 ER -