TY - JOUR TT - Improvement of Performance and Exhaust Emissions in Diesel Engines by Addition of n-hexadecane Material AU - Çelik, Mehmet PY - 2018 DA - September DO - 10.2339/politeknik.382994 JF - Politeknik Dergisi PB - Gazi University WT - DergiPark SN - 2147-9429 SP - 701 EP - 706 VL - 21 IS - 3 KW - n-hexadecane KW - yakıt katkıları KW - egzoz emisyonları KW - dizel motorlar KW - motor performansı N2 - Physical andchemical properties of fuels significantly affect engine performance andemissions. Various additives are added to the fuel to improve fuel quality,better combustion and reduce emissions. These additives create a catalyticeffect for better combustion of hydrocarbons. In this study, the effect ofvarying fuel properties on engine performance and exhaust emissions ofn-hexadecane additive added to diesel fuel was investigated. As a result of theexperiments, while the viscosity of n-hexadecane added fuels decreased, thecetane number increased. This improvement in fuel properties leads to betteratomization and increased combustion quality when fuel is injected into thefuel cylinder. As a result, the best improvement was obtained at 16%n-hexadecane (DHD16) ratio. At 2800 1/min, the power increases by 1.06%compared to diesel fuel (D0) while the brake specific fuel consumptiondecreases by 2.38%. Carbon monoxide (CO) emission decreases by 10.24%,hydrocarbon (HC) emission decreases by 19.31% and smoke emission decreases by19.96%. Improvement of combustion quality caused increase of heat emissionwhile nitrogen oxide (NOx) increased the emission by 6.66%. Due to the increasein cetane number, the maximum cylinder pressure increased and the ignitiondelay decreased. CR - [1] Kaimal V.K. and Vijayabalan P., “A detailed study of combustion characteristics of a DI diesel engine using waste plastic oil and its blends”, Energy Conversion and Management, 105: 951-956, (2015). CR - [2] Du J., Sun W., Guo L., Xiao S., Tan M., Li G. and Fan L., “Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends”, Energy Conversion and Management, 100: 300-309, (2015). CR - [3] Çelik M., Solmaz H. and Yücesu H.S., “Examination of the effects of organic based manganese fuel additive on combustion and engine performance”, Fuel Process. Technol. 139: 100-107, (2015). CR - [4] Shahabuddin M., Liaquat A.M., Masjuki H.H., Kalam M.A. and Mofiruj M., “Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel, Renew. Sustain. Energy Rev. 21: 623-632, (2013). CR - [5] Mangus M., Kiani F., Mattson J., Tabakh D., Petka J., Depcik C., Peltier E. and Stagg-Williams S., “Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection”, Energy, 89: 932-945, (2015). CR - [6] Ghasemi A., Barron R.M. and Balachandar R., “Spray-induced air motion in single and twin ultra-high injection diesel sprays”, Fuel, 121: 284-297, (2014). CR - [7] Agarwal A.K., Som S., Shukla P.C., Goyal H. and Longman D. “In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels”, Applied Energy, 156: 138-148, (2015). CR - [8] Lenin M.A., Swaminathan M.R. and Kumaresan G., “Performance and emission characteristics of a DI diesel engine with a nano-fuel additive”, Fuel, 109: 362-365, (2013). CR - [9] Poon H.M., Pang K.M., Ng H.K., Gan S. and Schramm J., “Development of multi-component diesel surrogate fuel models – Part I: Validation of reduced mechanisms of diesel fuel constituents in 0-D kinetic simulations”, Fuel, 180: 433-441, (2016). CR - [10] Wang X., Wang X. and Chen J., “Experimental investigations of density and dynamic viscosity of n-hexadecane with three fatty acid methyl esters”, Fuel, 166: 553-559, (2016). CR - [11] Parmar S., Pant K.K., John M., Kumar K., Pai S.M. and Newalkar B.L. “Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: Effect of divalent cation exchange”, Journal of Molecular Catalysis A: Chemical, 404-405: 47–56, (2015). CR - [12] Öztürk E., “Performance, emissions, combustion and injection characteristics of a diesel engine fueled with canola oil–hazelnut soapstock biodiesel mixture”, Fuel Process. Technol. 129: 183-191, (2015). CR - [13] Çaynak S., Gürü M., Biçer A., Keskin A. and İçingür Y., “Biodiesel production from pomace oil and improvement of its properties with synthetic manganese additive, Fuel, 88: 534-538, (2009). CR - [14] Tesfa, B., Mishra, R., Zhang, C., Gu, F. and Ball, A.D. “Combustion and performance characteristics of CI engine runnin with biodiesel”, Energy, 51: 101-115, (2013). CR - [15] Challen B. and Baranescu R., “Diesel Engine Referance Book, Second edition”, McFarland, ISBN: 0-7506-2176-1, (1984). CR - [16] Avinash A., Natarajan S. and Mahalakshmi N.V., “Lean homogenous combustion of E-diesel using external mixture formation technique”, Alexandria Engineering Journal, 54: 271-279, (2015). CR - [17] Liu H., Wang Z., Wang J., He X., Zheng Y., Tang Q. and Wang J., “Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends”, Energy, 88: 793-800, (2015). CR - [18] Ashraful A.M., Masjuki H.H., Kalam M.A., Rashedul H.K., Sajjad H. and Abedin M.J., “Influence of anti-corrosion additive on the performance, emission and engine component wear characteristics of an IDI diesel engine fueled with palm biodiesel”, Energy Convers. Manag. 87: 48-57, (2014). CR - [19] Oliveira A., Morais A.M., Valente O.S. and Sodré J.R., “Combustion characteristics, performance and emissions from a diesel power generator fueled by B7-ethanol blends”, Fuel Process. Technol. 139: 67-72, (2015). CR - [20] Keskin A., Ocakoğlu K., Reşitoğlu I.A. and Gürü M., “Influence of titanium based fuel additive on diesel engine performance and emission, J. Fac. Eng. Archit. Gazi Univ. 28 (3): 671-676, (2013). CR - [21] Venu H. and Madhavan V., “Influence of diethyl ether (DEE) addition in ethanol-biodiesel-diesel (EBD) and methanol-biodiesel-diesel (MBD) blends in a diesel engine”, Fuel, 189: 377–390, (2017). CR - [22] An H., Yang W.M., Maghbouli A., Li J., Chou S.K., Chua K.J., Wang J.X. and Li L., “Numerical investigation on the combustion and emission characteristics of a hydrogen assisted biodiesel combustion in a diesel engine”, Fuel, 120: 186–194, (2014). UR - https://doi.org/10.2339/politeknik.382994 L1 - https://dergipark.org.tr/en/download/article-file/409955 ER -