TY - JOUR T1 - Havuz Kaynama Şartlarında Su-bazlı Cerium Oksit Nano-süspansiyonunun Termal Davranışı TT - Thermal Behavior of Aqueous Cerium Oxide Nano-Suspension under the Pool Boiling Conditions AU - Çiloğlu, Doğan PY - 2017 DA - December Y2 - 2017 JF - Journal of the Institute of Science and Technology JO - J. Inst. Sci. and Tech. PB - Igdir University WT - DergiPark SN - 2536-4618 SP - 181 EP - 188 VL - 7 IS - 4 LA - tr AB - Bu çalışma, atmosfer basıncı altında yatay bir bakır plaka üzerinde cerium oksit (CeO2, ceria) nanosüspansiyonununhavuz kaynama karakteristiklerinin deneysel olarak incelenmesi üzerine gerçekleştirilmiştir.Nano akışkan süspansiyonu iki adım metodu ile hazırlanmıştır ve Na-citrate ilavesi, pH ayarı ve ultrasonik titreşimuygulanarak kararlı hale getirilmiştir. Cerium oksit nano akışkanının havuz kaynama ısı transfer katsayısı üzerinekaynama yüzeyine uygulanan ısı akısının etkisi deneysel olarak incelenmiş ve sonuçlar tartışılmıştır. Deneyselsonuçlar, iş yapan akışkan olarak cerium oksit nano akışkanının kullanılması ile havuz kaynama ısı transferkatsayısının arttığını göstermiştir. Ayrıca elde edilen sonuçlar, de-iyonize su ile karşılaştırıldığında, %0.1 hacimselkonsantrasyona sahip cerium oksit nano akışkanı için kritik ısı akısında %103 artış olduğunu göstermiştir. KW - Cerium oksit KW - havuz kaynama KW - ısı transferi KW - kritik ısı akısı KW - nano partikül N2 - The present paper focuses on an experimental study of pool boiling characteristics of ceriumoxide (CeO2, ceria) nano-suspension on a horizontal flat copper surface at atmospheric pressure. The nanofluidsuspension is prepared by a two-step method and stabilized using Na-citrate, pH setting and ultrasonic vibrationas well. The effect of applied heat flux to the boiling surface on pool boiling heat transfer coefficient (HTC) ofcerium oxide nanofluid is experimentally examined and briefly discussed. The results illustrate that the pool boilingHTC increases with using cerium oxide nanofluid as working fluid. Also, the results show that the critical heat fluxfor cerium oxide nanofluid having 0.1 vol.% nanoparticle concentration improves up to 103% compared with thedeionized water. CR - Ahmed O, Hamed MS, 2012. Experimental investigation of the effect of particle deposition on pool boiling of nanofluids. Int. J. Heat Mass Transf., 55: 3423-3436. CR - Alayli GA, Demir Y, Demir N, 2008. Purification of peroxidase from latex of Euphorbia (Euphorbia amygdaloides) and investigation of kinetic properties. Asian J. Chem., 20: 477-482. CR - Bang IC, Chang SH, 2005. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transfer, 48: 2407-2419. CR - Barton LE, Auffan M, Bertrand M, Barakat M, Santaella C, Masion A, Borschneck D, Olivi L, Roche N, Wiesner MR, Bottero JY, 2014. Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor. Environ. Sci. Technol., 48: 7289-7296. CR - Bindhu MR, Umadevi M, 2013. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 101: 184-190. CR - Buchanan JL, Turner PR, 1992. Numerical Methods and Analysis. McGraw-Hill, New York. CR - Cicek S, Gungor AA, Adiguzel A, Nadaroglu H, 2015. Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J. Chem., 486948: 7. CR - Ciloglu D, 2017. An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface. Heat Transfer Eng., http://dx.doi.org/10.1080/01457632.2016.1212571. CR - Ciloglu D, Bolukbasi A, 2015. A comprehensive review on pool boiling of nanofluids. Applied Thermal Engineering, 84: 45-63. CR - Ciloglu D, Bolukbasi A, Cifci H, 2015. Experimental investigation of pool boiling heat transfer in nanofluids around spherical surfaces. Journal of the Faculty of Engineering and Architecture of Gazi University, 30: 405-415. CR - Collin B, Auffan M, Johnson AC, Kaur I, Keller AA, Lazareva A, Lead JR, Ma X, Merrifield RC, Svendsen C, White JC, Unrine J.M., 2014. Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ. Sci.: Nano, 1: 533-548. CR - Harish G, Emlin V, Sajith V, 2011. Effect of surface particle interactions during pool boiling of nanofluids. Int. J. Therm. Sci., 50: 2318-2327. CR - Herna´ndez BA, Gonza´lez R, Viesca JL, Ferna´ndez JE, Di´az FJM, Machado A, Chou R, Riba J, 2008. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265: 422-428. CR - Keller A, McFerran S, Lazareva A, Suh S, 2013. Global life cycle releases of engineered nanomaterials. J. Nanopart.Res., 15: 1-17. CR - Kim SJ, Bang IC, Buongiorno J, Hu LW, 2007. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transfer, 50: 4105-4116. CR - Liu ZH, Qiu YH, 2007. Boiling heat transfer characteristics of nano fluids jet impingement on a plate surface. J. Heat Mass Transfer, 43: 699-706. CR - Mourgues A, Virginie H, Muller T, Marylise CC, 2013. Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid. Int. J. Heat Mass Transfer, 57: 595-607. CR - Ngoc ND, Minh DL, Quang KN, Byung SK, 2011. UV absorption by cerium oxide nanoparticles/epoxy composite thin films. Adv. Nat. Sci., Nanosci. Nanotechnol., 2: 045013. CR - Okawa T, Takamura M, Kamiya T, 2012. Boiling time effect on CHF enhancement in pool boiling of nanofluids. Int. J. Heat Mass Transf., 55: 2719-2725. CR - Raveshi MR, Keshavarz AM, Mojarrad S, Amiri S, 2013. Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nanofluids. Exp. Thermal Fluid Sci., 44: 805-814. CR - Sarafraz MM, Hormozi F, 2014. Nucleate pool boiling heat transfer characteristics of dilute Al2O3-ethyleneglycol nanofluids. Int. Commun. Heat Mass Transf., 58: 96-104. CR - Shahmoradi Z, Etesami N, Esfahany MN, 2013. Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int. Commun. Heat Mass Transf., 47: 113-120. CR - Sheikhbahai M, Esfahany MN, Etesami N, 2012. Experimental investigation of pool boiling of Fe3O4/ethylene glycol-water nanofluid in electric field. Int. J. of Therm. Sci., 62: 149-153. CR - Tiwari AK, Ghosh P, Sarkar J, 2013. Performance comparison of the plate heat exchanger using different nanofluids. Exp. Therm. Fluid Sci., 49: 141-151. CR - Vahabi K, Dorcheh SK, 2014. Biosynthesis of silver nanoparticles by Trichoderma and its medical applications, in Biotechnology and Biology of Trichoderma, Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, Eds., chapter 29, 393-404, Elsevier, London, UK. CR - You SM, Hong YS, O’Connor JP, 1994. The onset of film boiling on small cylinders: local dryout and hydrodynamic critical heat flux mechanisms. Int. J. Heat Mass Transf., 37: 2561-2569. CR - Zhao C, Chen YK, Ren G, 2013. A study of tribological properties of water-based ceria nanofluids. Tribol. Trans., 56: 275-283. UR - https://dergipark.org.tr/en/pub/jist/issue//390607 L1 - https://dergipark.org.tr/en/download/article-file/419692 ER -