TY - JOUR T1 - A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis AU - Utku, Feride Şermin AU - Özdemir, Ozan Enver AU - Bakay, Melahat Sevgül PY - 2018 DA - February JF - Electrica PB - İstanbul University-Cerrahpasa WT - DergiPark SN - 2619-9831 SP - 39 EP - 44 VL - 18 IS - 1 LA - en AB - A molecularly imprintedpolymer (MIP)-based impedimetric biosensor was developed for theelectrochemical analysis of low-weight biological molecules. Syntheticpolymeric matrices with specific and selective recognition sites, which arecomplementary to the shapes and sizes of the functional groups of analytes, canbe prepared using the molecular imprinting method. In this study, a smallmolecule, tris(hydroxymethyl)aminomethane (TRIS), was used to coat a graphitepencil tip with a TRIS-containing polyacrylamide gel to fabricate a workingelectrode. The electrode modification and performance were evaluated usingcyclic voltammetry and electrochemical impedance spectroscopy. Theelectrochemical properties of the modified electrodes were observed using anelectrochemical cell comprising a Ag/AgCl reference electrode, a Pt wire as thecounter electrode, and a pencil graphite tip as the working electrode using aredox-phosphate buffer solution with different concentrations of TRIS andEthylenediaminetetraacetic acid (EDTA). The I–V and impedance performanceof the chemicallymodified graphite pencil-tip electrodes exhibited decreased conductance andincreased impedance correlating with theincrease in TRISconcentration. Thus,MIP-based small-molecule biosensor prototypes can be promising economicalreplacements over other expensive sensors. KW - Molecularly Imprinted Polymer KW - Cyclic Voltammetry KW - Electrochemical Impedance Spectroscopy KW - tris(hydroxymethyl)aminomethane KW - Pencil Graphite Electrode CR - 1. A. Turner, I. Karube, G. S. Wilson, “Biosensors: Fundamentals and Applications”, Oxford University Press, Oxford, U.K., 1987. CR - 2. F. G. Banica, ed., “Chemical Sensors and Biosensors: Fundamentals and Applications”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2012. CR - 3. B. R. Eggins, “Chemical Sensors and Biosensors”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2002. CR - 4. S. Yan, Y. Fang, Z. Gao, “Quartz crystal microbalance for the determination of daminozide using molecularly imprinted polymers as recognition element”, Biosensors and Bioelectronics, vol. 22, no. 6, pp. 1087-1091, Apr, 2007. CR - 5. C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, and M. J. Whitcombe, “Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003”, J Molecular Recognition, vol. 19, no. 2, pp. 106-180, Jan, 2006. CR - 6. W. Li and S. Li, “Oligomers-Polymer Composites-Molecular Imprinting”, Springer, Berlin-Heidelberg, Germany, 2006. CR - 7. G. Guan, B. Liu, Z. Wang, Z. Zhang, “Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors”, Sensors, vol. 8, no. 12, pp. 8291-8320, Dec, 2008. CR - 8. L. Ye and K. Haupt, “Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery”, Analytical and Bioanalytical Chemistry, vol. 378, no. 8, pp. 1887-1897, Jan, 2004. CR - 9. A. Bossi, F. Bonini, A. P. F Turner and S. A. Piletsky, “Molecularly imprinted polymers for the recognition of proteins: the state of the art”, Biosensors and Bioelectronics, vol. 22, no. 6, pp. 1131-1137, Jan, 2007. CR - 10. E. Caro, N. Masqué, R. M. Marcé, F. Borrull, P. A. Cormack, and D. C. Sherrington, “Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples”, J Chromatography A, vol. 963, no. 1, pp. 169-178, July, 2002. CR - 11. G. Vasapollo, R. D. Sole, L. Mergola, M. R. Lazzoi, A. Scardino, S. Scorrano, and G. Mele, “Molecularly imprinted polymers: present and future prospective”, Int. J Mol Sci, vol. 12, no. 9, pp. 5908-5945, Sept 14, 2011. CR - 12. G. Gomori, “Preparation of Buffers for Use in Enzyme Studies”, Methods Enzymol., vol. 1, pp. 138-146, 1955. CR - 13. E. Barsoukov and J. R. Macdonald, “Impedance spectroscopy: theory, experiment, and applications”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2005. CR - 14. B. Ozcan, B. Demirbakan, G. Yesiller and M.K. Sezginturk, “Introducing a new method for evaluation of the interaction between an antigen and an antibody: Single frequency impedance analysis for biosensing systems”, Talanta, vol. 125, pp. 7-13, July, 2014. CR - 15. S. N. Topkaya, D. Ozkan-Ariksoysal, B. Kosova, R. Ozel and M. Ozsoz, “Electrochemical DNA biosensor for detecting cancer biomarker related to glutathione S-transferase P1 (GSTP1) hypermethylation in real samples”, Biosensors and Bioelectronics, vol. 31, no. 1, pp. 516-522, Jan, 2012. CR - 16. E. Asav and M. K. Sezginturk, “A novel impedimetric disposable immunosensor for rapid detection of a potential cancer biomarker”, Int. J Biological Macromolecules, vol. 66, pp. 273-280, May, 2014. CR - 17. L. Figueiredo, M. F. R., Pereira, M. M. A. Freitas and J. J. M. Orfao, “Modification of the surface chemistry of activated carbons”, Carbon, vol. 37, no. 9, pp. 1379-1389, Dec, 1999. CR - 18. I. G. David, D.-E. Popa and M. Buleandra, “Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis”, J Analytical Methods in Chemistry, https://doi.org/10.1155/2017/1905968, Jan, 2017. CR - 19. I. S. Park and N. Kim, “Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal”, Biosensors and Bioelectronics, vol. 13, no. 10, pp. 1091-1097, Nov, 1998. CR - 20. I. Markovich and D. Mandler, “The effect of an alkylsilane monolayer on an indium tin oxide surface on the electrochemistry of hexacyanoferrate”, J Electroanalytical Chemistry, vol. 484, no. 2, pp. 194-202, Apr, 2000. UR - https://dergipark.org.tr/en/pub/electrica/issue//397844 L1 - https://dergipark.org.tr/en/download/article-file/429680 ER -