TY - JOUR T1 - Researches on Anti-reflection Coating (ARC) Methods Used in PV Systems AU - Ekren, Nazmi PY - 2018 DA - February DO - 10.17694/bajece.402004 JF - Balkan Journal of Electrical and Computer Engineering PB - MUSA YILMAZ WT - DergiPark SN - 2147-284X SP - 42 EP - 46 VL - 6 IS - 1 LA - en AB - With the developmentof PV systems’ technology over the years and the reduction of production costs,PV systems are now being used for electricity generation. PV systems are listedamong the renewable energy sources as the only requirement is solar energy and electricitygeneration is carried out without any fuel and waste. Solar cells used in PVsystems are adversely affected by extremes of temperature, shading, reflection,and pollution. It is known that before sunrays reach the cell’s surface, someof them disappears from the protective glass surface and are reflected backfrom the cell through the glass surface. Anti-reflection coatings (ARC) areused to reduce the energy loss and increase solar cell efficiency and outputpower. SiO2 and MgF2 are the most commonly used solutionsamong these coatings. It has been seen that the most efficient applications,with anti-reflection coatings as single, double, triple and more layers, are intriple layers applications. It has been observed that applications to the protectiveglass surface have self-cleaning properties, and TiO2 and ZrO2are frequently used for this. The reflectance index of the protective glass,which is normally 1.51, can be reduced to 1.20 in silicone cells and 1.28 inthin film surfaces with the AR coatings. KW - PV systems KW - Anti-reflection KW - Anti-reflective Coating KW - Reflection index CR - [1] C.D. Evans, D.T. Monteith, D.M Cooper, “Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts”, Environmental Pollution, vol. 137, pp. 55-71, 2005. CR - [2] B. Kumaragurubaran, S. Anandhi, “Reduction of reflection losses in solar cell using anti reflective coating”, 2014 International conference on computation of power, energy, information and communication ICCPEIC, 2014. CR - [3] Fraunhofer Institue of Solar Energy Systems, 2015. CR - [4] Dimmler and Wachter, 2007. CR - [5] White paper for CIGS thin film solar cell technology, 2016. CR - [6] K. Branker, MJM Pathak, JM Pearce, “A review of solar photovoltaic levelized cost of electricity”, Renew. Sustain. Energy, vol. 15, pp. 4470-4482, rev 2011. CR - [7] M. Eckhart, M. El-Ashry, D. Hales, K. Hamilton, P. Rae, “Renewables 2017 Global Status Report”, p. 33, 2017. CR - [8] D. Huh, J. Shin, M. Byun, S. Son, P. Jung, H. Choi, Y. Kim, H. Lee, “Analysis of long-term monitoring data of PV modüle with Siox-based anti-reflective patterned protective glass”, Solar energy materials and solar cells, vol. 170, pp. 33-38, 2017. CR - [9] K.A Moharram, M.S, Abd-Elhady, Ha Kandil, H. el-Sherif, “Influence of cleaning using water and surfactants on the performance of photovoltaic panels”, Energy Convers Manage, vol. 68, pp. 266-272, 2013. CR - [10] M.S. Abd- Elhady, M.M. Fouad, T. Khalil, Improving the efficiency of photovoltaic (PV) panels by oil coating, Energy conversion and management, vol. 115, pp. 1-7, 2016. CR - [11] A.T. Kearney Energy Transition Institute, IPCC 2011, Special Report on Renewable Energy, MIT 2015, The Future of Solar Energy. CR - [12] L.A. Dobrzanski, M. Szindler, Sol gel Tio2 antireflection coating for silicon solar cells, Journal of achievements in materials and manufacturing engineering (JAMME), Vol. 52-1, 2012. CR - [13] S. Yoon, G. Turner, V. Garboushian, Thin, lightweight, %18 efficient space silicon solar cell and array, 25th PVSC, May 1996, Washington USA. CR - [14] X. Zhang, S. Cai, D. You, L. Yan, H. Lv, X. Yuan, B. Jiang, Template-free sol-gel preparation of süperhydrophobic ORMOSIL films for double-Wavelength broadband antireflective coating, Adv. Funct. Mater., vol. 23, no. 25, pp. 4361-4365, 2013. CR - [15] G. Rajan, K. Aryal, T. Ashrafee, S. Karki, S. Babcock, V. Ranjan, Real-time Optimization of Anti-reflective Coating for CIGS Solar Cells, Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 2250-2253. CR - [16] M.Z. Pakhuruddin, Y.Yusof, K.Ibrahim, A.A. Aziz, Fabrication and characterizaton of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell, Optik, vol. 124, pp. 5397-5400, 2013. CR - [17] F.Crisostomo, N.Hjerrild, S. Mesgari, Q. Li, R.A.Taylor, A hybrid PV/T collector using spectrally selective absorbing nanofluids, Applied Energy, vol. 193, pp. 1-14, 2017. CR - [18] U.G. Yasa, M.N. Erim, N. Erim, M.O. Girgin, H. Kurt, “Design of anti-reflective graded height nanogratings for photovoltaic applications”, NUSOD 2017. CR - [19] N. Wang, J. Fang, X. Zhang, G. Wang, L. Wang, C. Liu, H. Zhao, Z. Chen, X.L. Chen, J. Sun, Y. Zhao, “Combined SiO2 antireflective coating with MOCVD-ZnO:B to improve light absorption in thin-film solar cells”, Solar Energy Materials & Solar Cells, vol. 130, pp. 420-425, 2014. CR - [20] Y. Ota, N. Ahmad, K. Nishioka, “A 3,2% output increase in an existing photovoltaic system using an anti-reflection and anti-soiling silica-based coat”, Solar Energy, vol.136, pp. 547-552, 2016. CR - [21] Y. Lu, X. Zhang, J. Huang, J. Li, T. Wei, P. Lan, Y. Yang, H. Xu, W. Song, “Investigation on antireflection coating for Al:ZnO in silicon thin-film solar cells”, Optik, vol. 124, pp. 3392-3395, 2013. CR - [22] G. Rajan, T.Begou, K.Aryal, T.Ashrafee, S.Karki, V.Ranjan, A.A. Rockett, N.J. Podraza, R.W. Collins, S. Marsillac, “Optimization of multi-layered anti-reflective coating for ultra-thin Cu(In,Ga)Se2 Solar Cells”, Photovoltaic Specialists Conference (PVSC), IEEE 43rd, pp. 1506-1510, 2016. CR - [23] D. Huh, J.H. Shin, M. Byun, S. Son, P.H. Jung, H.J. Choi, Y.D. Kim, H. Lee, “Analysis of long-term monitoring data of PV module with SiOx-based anti-reflective patterned protective glass”, Solar Energy Materials and Solar Cells, vol.170, pp. 33-38, 2017. CR - [24] Y.Yuan, X.Lu, G.Yan, R.Hong, Sol-gel preparation of antireflective coating with abrasion resistance by base/acid double catalysis and surface treatment, Soalr Energy, 155, 2017, 1366-1372. CR - [25] S. Yoon, G. Turner, V. Garboushian, Thin, lightweight, 18% efficient space silicon solar cell and array, 25th IEEE PV Conference, 1996, Washington DC USA, pp. 259-262. CR - [26] W. Abeygunasekara, V. Karunaratne, P. Hiralal, “Numerical Modelling of Zinc Oxide Nanowire Anti Reflective Coating”, 10th IEEE International Conference on Industrial and Information Systems ICIIS, 2015, Sri Lanka, pp. 244-249. CR - [27] X. Huang, Y. Yuan, S. Liu, W. Wang, R. Hong, “One-step sol-gel preparation of hydrophobic antireflective SiO2 coating on poly(methyl methacrylate) substrate”, Materials Letter, vol. 208, pp. 62-64, 2017. CR - [28] D.Adak, S.Ghosh, P.Chakrabarty, A.Mondal, H.Saha, R.Mukherjee, R.Bhattacharyya, Self-cleaning V-TiO2:SiO2 thin-film coating with enhanced transmission for solar glass cover and related applications, Solar Energy, vol. 155, pp. 410-418, 2017. CR - [29] G.Womack, P.M.Kaminski, J.M.Walls, “High Temperature Stability of Broadband Anti-reflection Coating on Soda Lime Glass for Solar Modules”, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, LA USA. CR - [30] P.M. Kaminski, G. Womack, J.M. Walls, “Broadband Anti-reflection coating for thin film photovoltaics”, Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, Denver USA. UR - https://doi.org/10.17694/bajece.402004 L1 - https://dergipark.org.tr/en/download/article-file/463934 ER -