TY - JOUR T1 - 1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ TT - Prediction of 1940 nm Fiber Laser Induced Thermal Damage Using Artificial Neural Networks AU - Yıldız, Fikret PY - 2019 DA - August Y2 - 2019 DO - 10.17482/uumfd.410963 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ University WT - DergiPark SN - 2148-4155 SP - 583 EP - 594 VL - 24 IS - 2 LA - tr AB - Buçalışmada Yapay Sinir Ağları (YSA) yöntemi kullanılarak 1940 nm dalgaboyunasahip lazer kaynağının karaciğer dokusu üzerinde oluşturduğu ısıl hasarların güçve uygulama süreleri ile arasındaki ilişkisi incelenmiştir. Farklı güçdeğerlerine sahip lazer kaynağı koagülasyon ve karbonizasyon gözlenene kadar dokuyafarklı sürelerde uygulanmıştır. Buna bağlı olarak radyal ve düşey yönde oluşanısıl hasarlar deneysel olarak ölçülmüş ve kayıt altına alınmıştır. Bukayıtların %70’i Matlab ortamında geliştirilen YSA modellerini eğitmek içinkullanılmıştır. Lazer gücü ve uygulama süreleri model için giriş verileri,koagülasyon/karbonizasyon oluşma durumu ve oluşan ısıl hasarlar ise (çap,derinlik) modelin çıkış değerleri olarak kabul edilmiştir. Giriş verilerikullanılarak beş farklı öğrenme (LM, GDA, GDX, CGP ve BFG) algoritmasının enküçük kareler değeri (MSE) hesaplanmıştır ve karşılaştırılmıştır. Gizlikatmanında 14 tane nörona sahip GDX, 2-14-3 yapısı, en iyi MSE (7.58E-2)sonucunu vermiştir ve eğitimde kullanılmayan veriler ile bu algoritmanın tahminetme performansını test etmek için kullanılmıştır. Geliştirilen modelin nekadar iyi çalıştığını anlamak için YSA tarafından tahmin edilen sonuçlar,deneysel sonuçlar ile karşılaştırılmıştır. Minimum %2.7 ve % 3.6 hata oranı ile dokuda oluşan ısıl çapve derinliklerinin tahmin edilebileceği gösterilmiştir. Bu sonuçlara göre,medikal uygulamalarda YSA yönteminin lazere yardımcı bir araç olarak kullanılması,çevre dokuların korunarak istenilen hedef bölgenin daha kontrollü ve dahayüksek doğrulukla tedavisini mümkün kılabilir. KW - Yapay Sinir Ağları (YSA) KW - Koagülasyon KW - Karbonizasyon N2 - These studypresents relation between power and application time of 1940 nm laser source andthermal damage occurred on liver tissue using artificial neural networks (ANNs)method. Laser source with different powers and application times implemented onliver tissue until onset of coagulation and carbonization. Thermal damagesoccurred in horizontal and vertical direction have been experimentally measuredand recorded. 70 % of this data was used to training ANN model, which was builtin Matlab environment. Power and application time were defined as inputparameters of model. Coagulation /carbonization occurrence,diameter and depth of thermal damages were usedas output of model. This data was used to calculate and compare MSE value offive different learning algorithm (LM, GDA, GDX, CGP ve BFG). GDX algorithm with a 14 neuron in hidden layer,2-14-3, was resulted in minimum MSE value (7.58E-2) and remaining untrained data was used to show prediction performanceof GDX algorithm. ANN model outputs were compared with experimental results. Itwas shown that diameter and depth of coagulation and carbonization can bepredicted using using ANN method with a minimum 2.7% and 3.6% success rate,respectively. According to these results, ANN assisted laserthermal therapies can provide more accurate treatment of undesired target tissue(tumor) with a minimal damage of surrounding healthy tissues. CR - Amato, F., López, A., Peña-Méndez, E. M., Vaňhara, P., Hampl, A., Havel, J. (2013) Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine, 11(2):, 47–58. https://doi.org/10.2478/v10136-012-0031-x CR - Carleo, G. and Troyer, M. (2016) Solving the Quantum Many-Body Problem with Artificial Neural Networks. arXiv e-prints, 127383. https://doi.org/10.1126/science.aag2302 CR - Cömert, Z. and Kocamaz, A. (2017) A Study of Artificial Neural Network Training Algorithms for Classification of Cardiotocography Signals. Bitlis Eren University Journal of Science and Technology, 7(2):93–103. https://doi.org/10.17678/beuscitech.338085 CR - Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., Blasco, J. (2011) Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food and Bioprocess Technology, 4(4):, 487–504. https://doi.org/10.1007/s11947-010-0411-8 CR - Dick, E. A., Taylor-Robinson, S. D., Thomas, H. C., Gedroyc, W. M. W. (2002) Ablative therapy for liver tumours. Gut, 50(5):, 733–739. https://doi.org/10.1136/gut.50.5.733 CR - Er, O., Yumusak, N., Temurtas, F. (2010). Chest diseases diagnosis using artificial neural networks. Expert Systems with Applications, 37(12):, 7648–7655. https://doi.org/10.1016/j.eswa.2010.04.078 CR - Fast, M. and Palmé, T. (2010) Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant. Energy, 35(2):, 1114–1120. https://doi.org/10.1016/j.energy.2009.06.005 CR - Faust, O., Acharya U., R., Ng, E. Y. K., Ng, K.-H., Suri, J. S. (2012) Algorithms for the Automated Detection of Diabetic Retinopathy Using Digital Fundus Images: A Review. Journal of Medical Systems, 36(1):, 145–157. https://doi.org/10.1007/s10916-010-9454-7 CR - Huang, Y., Kangas, L. J., Rasco, B. A. (2007)Applications of Artificial Neural Networks (ANNs) in food science. Critical Reviews in Food Science and Nutrition, 47(2):, 113–126. https://doi.org/10.1080/10408390600626453 CR - Hung, O. N., Chan, C. K., Kan, C. W., Yuen, C. W. M., Song, L. J. (2014) Artificial neural network approach for predicting colour properties of laser-treated denim fabrics. Fibers and Polymers, 15(6):, 1330–1336. https://doi.org/10.1007/s12221-014-1330-5 CR - Hung, O. N., Song, L. J., Chan, C. K., Kan, C. W., Yuen, C. W. M. (2011) Using artificial neural network to predict colour properties of laser-treated 100% cotton fabric. Fibers and Polymers, 12(8):, 1069–1076. https://doi.org/10.1007/s12221-011-1069-1 CR - Jean, M. Der, Liu, C. Du, Wang, J. T. (2005) Design and development of artificial neural networks for depositing powders in coating treatment. Applied Surface Science, 245(1–4):290–303. https://doi.org/10.1016/j.apsusc.2004.10.041 CR - Jiang, J., Trundle, P., Ren, J. (2010) Medical image analysis with artificial neural networks. Computerized Medical Imaging and Graphics, 34(8):, 617–631. https://doi.org/10.1016/j.compmedimag.2010.07.003 CR - Kumar, K., Parida, M., Katiyar, V. K. (2013) Short Term Traffic Flow Prediction for a Non Urban Highway Using Artificial Neural Network. Procedia - Social and Behavioral Sciences, 104:, 755–764. https://doi.org/10.1016/j.sbspro.2013.11.170 CR - Niemz, M. . H. (2007) Lasers-Tissue Interactions: Fundamentals and Applications, Springer. https://doi.org/10.1007/978-3-662-04717-0 CR - Özdemir, A. T., Danisman, K. (2015) A comparative study of two different FPGA-based arrhythmia classifier architectures. Turkish Journal of Electrical Engineering and Computer Sciences, 23:, 2089–2106. https://doi.org/10.3906/elk-1305-41 CR - Özdemir, A. T., Danişman, K. (2011) Fully parallel ann-based arrhythmia classifier on a single-chip fpga: Fpaac. Turkish Journal of Electrical Engineering and Computer Sciences, 19(4): 667–687. https://doi.org/10.3906/elk-1006-488 CR - Rangraz, P., Behnam, H., Shakhssalim, N., Tavakkoli, J. (2012) A Feed-forward Neural Network Algorithm to Detect Thermal Lesions Induced by High Intensity Focused Ultrasound in Tissue. Journal of medical signals and sensors, 2(4):192–202. CR - Rao, S., Shrivastava, V., Dev, S., Seetharamu, K. N. (2012) Prediction of the Damage Coefficient in a Prostate Cancer Tissue during Laser Ablation Using Artificial Neural Networks, Proceedings of the World Congress on Engineering, 3:, 2–7. CR - Seera, M., Lim, C. P. (2014) A hybrid intelligent system for medical data classification. Expert Systems with Applications, 41(5): 2239–2249. https://doi.org/10.1016/j.eswa.2013.09.022 CR - Shukur, O. B., Lee, M. H. (2015) Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renewable Energy, 76:, 637–647. https://doi.org/10.1016/j.renene.2014.11.084 CR - Søreide, K., Thorsen, K., J. A. Søreide (2014) Predicting outcomes in patients with perforated gastroduodenal ulcers: artificial neural network modelling indicates a highly complex disease. European Journal of Trauma and Emergency Surgery, 41(1):, 91–98. https://doi.org/10.1007/s00068-014-0417-4 CR - Su, B., Tang, J., Liao, H. (2015). Automatic laser ablation control algorithm for an novel endoscopic laser ablation end effector for precision neurosurgery. IEEE International Conference on Intelligent Robots and Systems, 4362–4367. https://doi.org/10.1109/IROS.2015.7353996 CR - Theisen-Kunde, D., Danicke, V., Brinkmann, R. (2009) Comparison of two cw infrared laser systems emitting wavelengths at 1.92 µm and 2.01 µm for tissue dissection in liver surgery. IFMBE Proceedings, 25(6):, 132–135. https://doi.org/10.1007/978-3-642-03906-5-36 CR - Tkáč, M. and Verner, R. (2015) Artificial neural networks in business: Two decades of research. Applied Soft Computing, 38:788–804. https://doi.org/10.1016/j.asoc.2015.09.040 CR - Vogl, T J, Mack, M. G., Straub, R., Eichler, K., Engelmann, K., Zangos, S., Woitazek, D. (2001) MR guided laser-induced thermotherapy (LITT) of malignant liver and soft tissue tumours. Medical Laser Application, 16(2):91–102. https://doi.org/http://dx.doi.org/10.1078/1615-1615-00015 CR - Vogl, Thomas J, Mack, M., Eichler, K., Lehnert, T., Nabil, M. (2006) Effect of laser-induced thermotherapy on liver metastases. Expert review of anticancer therapy, 6(5):, 769–774. https://doi.org/10.1586/14737140.6.5.769 CR - Wang, C., Li, L., Wang, L., Ping, Z., Flory, M. T., Wang, G., Xi, Y., Li, W. (2013) Evaluating the risk of type 2 diabetes mellitus using artificial neural network: An effective classification approach. Diabetes Research and Clinical Practice, 100(1):, 111–118. https://doi.org/10.1016/j.diabres.2013.01.023 CR - Wang, Y. C., Chan, T. C.-H., Sahakian, A. V. 2018. Real-time estimation of lesion depth and control of radiofrequency ablation within ex vivo animal tissues using a neural network. International journal of hyperthermia ,International Journal of Hyperthermia, 34(7):1104-1113. doi: 10.1080/02656736.2017. CR - Yildiz, F (2012) NIR-IR Lazerlerin Karaciğer Üzerindeki Etkilerinin In Vitro Ortamda Araştırılması ve Karşılaştırılması, Yüksek Lisans Tezi,İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü,İstanbul CR - Yildiz, F., Gulsoy, M., Cilesiz, I. (2016) An experimental study on photothermal damage to tissue: The role of irradiance and wavelength. Laser Physics, 26(9):, 95601. https://doi.org/10.1088/1054-660x/26/9/095601 CR - Yildiz, F. and Özdemir, A. T. (2019) Prediction of laser-induced thermal damage with artificial neural networks. Laser Physics, 29(7): 075205. https://doi.org/10.1088/1555-6611/ab183b CR - Zhang, Y., Wu, L., Wang, S. (2011) Magnetic Resonance Brain Image Classification By an Improved Artificial Bee Colony Algorithm. Progress In Electromagnetics Research, 116: 65–79. https://doi.org/10.2528/PIER11031709 UR - https://doi.org/10.17482/uumfd.410963 L1 - https://dergipark.org.tr/en/download/article-file/819844 ER -