TY - JOUR T1 - ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU TT - Optimizing Diagonal Steel Braces Used in Steel Structures via Artificial Bee Colony Algorithm AU - Bölükbaş, Yakup AU - Karabörk, Turan AU - Sönmez, Mustafa AU - Aydın, Ersin AU - Çelik, Tülin PY - 2018 DA - April Y2 - 2018 DO - 10.17482/uumfd.414427 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ University WT - DergiPark SN - 2148-4155 SP - 51 EP - 64 VL - 23 IS - 1 LA - tr AB - Diyagonal çelik çapraz (DÇÇ) sistemler, mevcutyapının deprem performansının iyileştirilmesinde veya yeni yapının depremedayanıklı olarak tasarlanmasında yaygın olarak kullanılan yöntemlerdenbirisidir. Bu sistemler yapının yatay yük taşıma kapasitesini arttırır veyapının yanal rijitliğine katkı sağlamaktır. Çelik diyagonal çaprazların yapısistemindeki yerleşimi, yapı sistemin performansını etkileyen önemlietkenlerden birisidir. Bu çalışma, çelik çaprazların yerleşimdeki optimumdağılımın belirlenmesi için yapay arı koloni optimizasyon tekniği kullanılarakyeni bir algoritma sunulmuştur. Tepe deplasmanına ve taban kesme kuvvetinebağlı transfer fonksiyonları amaç fonksiyonu olarak seçilmiştir. Buradaki temelamaç, belirlenen kısıtlar altında amaç fonksiyonlarının minimize edilmesidir.Tasarım değişkeni olarak her kata yerleştirilen çelik çaprazların rijitlikleriseçilmiştir. Ayrıca, çelik çaprazların toplam rijitliği, optimizasyonprobleminin aktif kısıtlı olarak belirlenmiştir. Hazırlanan optimizasyon algoritmasınınperformansının test edilmesi amacıyla 20 katlı çelik yapı modeli oluşturulmuşve El Centro depremi kaydı kullanılarak zaman tanım alanında dinamik analizyapılmıştır. Yapay arı koloni algoritması kullanılarak elde edilen optimumçelik çapraz yerleşimi, düzgün dağılım ile karşılaştırılmıştır. Bu bulgulargöstermiştir ki, tasarlanan algoritma ile belirlenen optimum diyagonal çelikçapraz dağılımı, her bir amaç fonksiyonu için tatmin edici sonuçlar vermiştir. KW - Diyagonal çelik çaprazlar KW - yapay arı koloni algoritması KW - yapısal optimizasyon KW - transfer fonksiyonları N2 - Steel diagonalbraces (SDB) systems, are one of widely used methods for improving the seismicperformance of existing structures or new construction of earthquake-resistantdesign. These systems contribute to the stiffness of the structure as well asincreased lateral load carrying capacity of the structure. Placement on thesteel diagonal braces is one of the significant factors affecting theperformance of the system. In this study, a new algorithm to find the optimaldistribution of SDB using artificial bee colony optimization technique ispresented. The objective functions are chosen as the transfer functionamplitude of the top displacement and the transfer function amplitude of thebase shear force. The main purpose is to minimize the objective function underspecific constraints. Stiffness parameters of steel braces located on eachfloor is chosen as the design variables. Additionally, the sum of the stiffnessparameter of the SDB is accepted as an active constraint. In order to test theresponse the performance of results obtained from ABC, 20 story steel bracedbuilding is modeled and analyzed using time history methods under the El-Centroearthquake. Optimum SDB location obtained using artificial bee colony algorithmis compared to uniform distribution of SDB’s. The findings show that, theoptimum SDB distribution give satisfactory results for each of the objectivefunctions. CR - Aydin, E. and Boduroglu, M. H. (2008) Optimal placement of steel diagonal braces for upgrading the seismic capacity of the existing structures and its comparison with optimal dampers, J.Constr.SteelRes., 64(1), 72-86. doi: 10.1016/j.jcsr.2007.04.005 CR - Aydin, E., Boduroglu, M. H. and Guney, D. (2007) Optimal damper distribution for seismic rehabilitation of planar building structures, Eng. Struct., 29(2), 176-185. doi: 10.1016/j.engstruct.2006.04.016 CR - Aydin , E., Sonmez, M. and Karabork, T. (2015). Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm, Steel and Composite Structures, 19(2), 349-368. doi:10.12989/scs.2015.19.2.349 CR - Bansal, J. C., Sharma, H. and Jadon, S. S. (2013) Artificial bee colony algorithm: A survey, Int. J. Adv. Intell. Paradigms, 5(1-2), 123-159. doi: 10.1504/IJAIP.2013.054681 CR - Bartera, F. and Giacchetti, R. (2003) Steel dissipating braces for upgrading existing building frames, J.Constr. Steel Res., 60(3-5), 751-769. doi: 10.1016/S0143-974X(03)00141 CR - Cimellaro, G. P. (2007) Simultaneous stiffness-damping optimization of structures with respect to acceleration displacement and base shear, Eng. Struct., 29(11), 2853-2870. doi: 10.1016/j.engstruct.2007.01.001 CR - Colunga, A. T. and Vergara, A. A. (1997) Comparative study on the seismic retrofit of a mid-rise steel building: steel bracing vs. energy dissipation, Earthq. Eng. Struct. D., 26(6), 637-655. doi: 10.1002/(SICI)1096-9845(199706)26:6 CR - Downs, R. E., Hjelmstat, K. D. and Foutch, D. A. (1991). Evaluation of two RC building retrofit with steel bracing, IL: Department of Civil Engineering, University of Illinois at. CR - Frisch, V. K. (1967) Dance Language and Orientation of Bees. Cambridge: Harvard University Press. İsbn: 9780674418776 CR - Gorgulu, T., Tama, Y. S., Yilmaz, S. and Kaplan, H. (2012) Strengthening of reinforced concrete structures with external steel shear walls, J. Constr. Steel Res., 70, 226-235. doi: 10.1016/j.jcsr.2011.08.010 CR - Karaboga, D. (2005) An idea based on honey bee swarm for numerical optimization, Kayseri: Computer Engineering Department: Computer Engineering Department, Erciyes University. CR - Karaboga, D. and Akay, B. (2009) Survey: Algorithms simulating bee swarm intelligence, Artif. Intell.Rev., 31, 61-85. doi: 10.1007/s10462-009-9127-4 CR - Karaboga, D. and Basturk, B. (2008) On the performance of artificial bee Colony (ABC), Appl. Soft.Comp., 8, 687-697. doi: 10.1016/j.asoc.2007.05.007 CR - Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. (2014) A comprehensive survey: Artificial bee colony (ABC) algorithm and applications, Artif. Intell. Rev., 42, 21-57. doi: 10.1007/s10462-012-9328-0 CR - Kawamata, S. and Masaki, Q. (1980) Strengthening effect of eccentric steel diagonal braces to existing RC frames, Proceedings of the 7th World Conference on Earthquake Engineering, İstanbul, Türkiye. CR - Kennedy, J., Eberhart, R. C. and Shi, Y. (2001) Swarm Intelligence, San Francisco: Morgan Kaufmann Publishers. Isbn:1-55860-595-9 CR - Lee, K. S. and Geem, Z. W. (2004) A new structural optimization method based on the harmony search algorithm, Comput. Struct., 82(9-10), 781-798. doi: 10.1016/j.compstruc.2004.01.002 CR - Lemmens, N., Jong, S., Tuyls, K. and Nowe, A. (2007) Bee behaviour in multi-agent systems: A bee foraging algorithm, Proceedings of the 7th ALAMAS Symposium, The Hague. CR - Maheri, M. R. and Sahebi, A. (1997) Use of steel bracing in reinforced concrete frames, Eng. Struct., 19(12), 1018-1024. doi: 10.1016/S0141-0296(97)00041-2 CR - Miranda, E. (1991) Seismic evaluation and upgrading of existing structures, CA, USA: University of California at Berkeley. CR - Mitchell, D. and Dandurand, A. (1988) Repair and upgrading of concrete structures in Mexico City after the 1985 earthquake, Can. J. Civil Eng., 15(6), 1052-1066. doi: 10.1139/l88-138 CR - Pham, D. T., Granbarzadeh, A., Koc, E. and Otri, S. R. (2006) The bee algorithm– A novel tool for complex optimization problems, Proceedings of Intelligent Production Machines and Systems (IPROMS). Cardiff. CR - Sonmez, M. (2011a) Artificial bee colony algorithm for optimization of truss structures, Appl. Soft.Comput. J., 11(2), 2406-2418. doi: 10.1016/j.asoc.2010.09.003 CR - Sonmez, M. (2011b) Discrete optimum design of truss structures using artificial bee colony algorithm, Struct. Multidisc. Optim., 43(1), 85-97. doi: 10.1007/s00158-010-0551-5 CR - Takewaki, I. (1999) Displacement-acceleration control via stiffness-damping collaboration, Earthq. Eng. Struct. D., 28(12), 1567-1585. doi: 10.1002/(SICI)1096-9845(199912)28:12 CR - Takewaki, I. (2000) Optimum damper placement for planar building frames using transfer functions, Struct. Mult.-Disp. Optim., 20(4), 280-287. doi: 10.1007/s001580050158 CR - Turker, T. and Bayraktar, A. (2011) Experimental and numerical investigation of brace configuration effects on steel structures, J. Construct. Steel Res., 67(5), 854-865. doi: 10.1016/j.jcsr.2010.12.008 CR - Valle, C. E. (1980) Some lessons from the March 14, 1979 earthquake in Mexico City, Proceedings of 7th World Conference on Earthquake Engineering, İstanbul. CR - Valle, C. E., Foutch, D. A., Hjelmstad, K. D., Gutierrez, E. F. and Colunga, A. T. (1988) Seismic retrofit of RC building: A case study, Proceedings of 9th World Conference on Earthquake Engineering, Kyoto,Tokyo. CR - Wang, D. (2006) Optimal design of structural support positions for minimizing maximal bending moment, Finite Elem. Anal. Des., 43, 95-102. doi: 10.1016/j.finel.2006.07.004 CR - Yamamato, Y. and Aoyama, H. (1987) Seismic behaviour of existing RC frame strengthened with retrofitting steel elements, Proceedings of U.S.-Japan Seminar on Repair and Retrofit of Existing Structures, Tsukuba, Japan. UR - https://doi.org/10.17482/uumfd.414427 L1 - https://dergipark.org.tr/en/download/article-file/457447 ER -