TY - JOUR T1 - Wireless Hand Rehabilitation System (WHRS) AU - Gücüyener, Aytek AU - Kaplanoğlu, Erkan PY - 2016 DA - February JF - Balkan Journal of Electrical and Computer Engineering PB - MUSA YILMAZ WT - DergiPark SN - 2147-284X SP - 9 EP - 13 VL - 5 IS - 1 LA - en AB - Loss of motor skills in hand due to several reasons affects daily life in a negative way. Treatment or rehabilitation must be applied in order to reactivate motor skills. Different systems were developed in the rehabilitation process by benefiting from technology. Those systems work as telerehabilitation-based or with external skeleton manipulator. An internet connection is required for telerehabilitation-based systems and a physical therapist must carry out the rehabilitation process for systems with external skeleton manipulator. This shall increase the work load of physical therapist. In this study, it is aimed to decrease the work load of physical therapist and develop a hand rehabilitation system with easier and more flexible usage. With this purpose, a system that consists of three units communicate with each other wirelessly and which could be used even without a physical therapist. KW - Rehabilitation hand KW - wireless control KW - mobile rehabilitation KW - wearable rehabilitation devices CR - [1] Zhang, S., Guo, S., Gao, B., Hirata, H., Ishihara, H.,(2015), “Design of a novel telerehabilitation system with a force-sensing mechanism.”, Sensors, Vol.15, pp. 11511-11527, ISSN: 14248220, (Switzerland). [2] Durfee, K. W., Weinstein, A. S., Carey, R. J., (2005), “Home stroke telerehabilitation system to train recovery of hand function”, 9th International Conference on Rehabilitation Robotics, pp.353-356 [3] Pyk, P., Wille, D., Chevrier, E., (2008), “A Paediatric Interactive Therapy System for Arm and Hand Rehabilitation”, IEEE Journal Virtual Rehabilitation. pp. 127-132. [4] Sha, M., Varley, R. M., Richards, J., (2009), “Overcoming the information overload problem in a multiform feedback based virtual reality system for hand motion rehabilitation”, International Conference on CyberWorlds., pp 51–56. [5] Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C. & Frisoli, A. (2015), “An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation”, Vol.8, No.2, pp.140 – 151. [6] Heuser, A.; Kourtev, H.; Winter, S.; Fensterheim, D.; Burdea, G.; Hentz, V.; Forducey, P., (2007), “Telerehabilitation Using the Rutgers Master II Glove Following Carpal Tunnel Release Surgery: Proof-of- Concept”, Neural Systems and Rehabilitation Engineering, IEEE Transactions, Vol.15, pp. 43 – 49. [7] Cortese, M.; Cempini, M.; de Almeida Ribeiro, P.R.; Soekadar, S.R.; Carrozza, M.C.; Vitiello, N.A.,(2015), “Mechatronic System for Robot- Mediated Hand Telerehabilitation”, Mechatronics, IEEE/ASME Transactions, Vol.20, pp.1753 – 1764 . [8] XBee ZigBee http://www.digi.com/products/xbee-rf-solutions /modules /xbee-zigbee, Access Date: 01.04.2015. [9] 2.2 inch Flex Sensor https://www.sparkfun.com /products /10264 Access Date: 15.04.2015. [10] 4.5 inch Flex Sensor https://www.sparkfun.com /products /8606 Access Date: 15.04.2015. [11] Arduino Uno, https://www.arduino.cc /en /Main /ArduinoBoardUno, Access Date: 20.04.2015. [12] Map Function, https://www.arduino.cc /en /Reference /Map, Access Date: 23.04.2015. [13] SG 5010 servo motors, http://www.towerpro.com.tw /product /sg5010-4/, Access Date: 20.04.2015. [14] uLCD-32PTU touch screen, http://www.4dsystems.com.au/product /uLCD _32PTU / Access Date: 01.11.2015. [15] DS1302 RTC datasheet, http://datasheets.maximintegrated.com /en /ds /DS1302.pdf, Access Date: 01.11.2015. [16] Wireless SD Shield, https://www.arduino.cc /en /Main /Arduino Wireless Shield, Access Date: 12.04.2015. [17] Arduino Mega 2560, https://www.arduino.cc /en /Main /arduino Board Mega 2560, Access Date: 12.04.2015. UR - https://dergipark.org.tr/en/pub/bajece/issue//415851 L1 - https://dergipark.org.tr/en/download/article-file/458704 ER -