TY - JOUR T1 - Polyoxotungstate/Oxy-Graphene Nanocomposite Multilayer Films For Electrocatalytic Hydrogen Evolution AU - Torlak, Yasemin PY - 2018 DA - September Y2 - 2018 DO - 10.18596/jotcsa.420009 JF - Journal of the Turkish Chemical Society Section A: Chemistry JO - JOTCSA PB - Turkish Chemical Society WT - DergiPark SN - 2149-0120 SP - 1169 EP - 1176 VL - 5 IS - 3 LA - en AB - In this study, nanocomposites were formed together withKeggin-type K7-xNaxPW11O39∙14H2O(POTs) clustersand oxygenated-graphene (Oxy-G). It was produced as a multilayer bylayer-by-layer self-assembly method using protonated poly (ethylenimine) (PEI).The produced (PEI / POTs / Oxy-G) n multilayer films were controlled by XRD,cyclic voltammetry and UV-visible spectroscopy. (PEI / POTs / Oxy-G) nmultilayers modified on a glassy carbon electrode and the hydrogen evolutionreaction taking advantage of the electrocatalytic activity of thisnanocomposite. Multilayer has been shown to exhibit a potentially goodelectrocatalytic activity at -0.4 V. A notable electrocatalytic hydrogenevolution reaction could be identified on the (PEI/ POTs/Oxy-G)n multilayer.We demonstrate that expanded the application of POTs/G nanocomposites to theelectrocatalysis of oxygen reduction reaction and hydrogen evolution reaction.This excellent approach will offer new insights into different electrode structureand the development of novel electroactive catalysts. KW - polyoxotungstate KW - multilayer graphene films KW - hydrogen evolution CR - 1. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater.,2007, 6, 183−191. CR - 2. Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R., Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25, 3820−3839. CR - 3. Kim, Y. K.; Han, S. W.; Min, D. H. Graphene Oxide Sheath on Ag Nanoparticle/Graphene Hybrid Films as an Antioxidative Coating and Enhancer of Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces. 2012, 4, 6545−6551. CR - 4. Seger, B.; Kamat, P. V. Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in Pem Fuel Cells. J. Phys. Chem. C. 2009, 113, 7990−7995. CR - 5. Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22, 1392−1401. CR - 6. Williams, G.; Seger, B.; Kamat, P. V. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano. 2008, 2, 1487−1491. CR - 7. Wang, Q. H.; Jiao, L. F.; Du, H. M.; Wang, Y. J.; Yuan, H. T. Fe3O4 Nanoparticles Grown on Graphene as Advanced Electrode Materials for Supercapacitors. J. Power Sources. 2014, 245, 101−106. CR - 8. Zeng, G.; Xing, Y.; Gao, J.; Wang, Z.; Zhang, X. Unconventional Layer-by-Layer Assembly of Graphene Multilayer Films for Enzyme- Based Glucose and Maltose Biosensing. Langmuir 2010, 26, 15022−15026. CR - 9. Liu, R.; Li, S.; Yu, X.; Zhang, G.; Zhang, S.; Yao, J.; Keita, B.;Nadjo, L.; Zhi, L. Facile Synthesis of Au-Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: An Enzyme-Free ElectrochemicalBiosensor for Hydrogen Peroxide. Small. 2012, 8, 1398−1406. CR - 10. Zhang, Q. L.; Xu, T. Q.; Wei, J.; Chen, J. R.; Wang, A. J.; Feng,J. J. Facile Synthesis of Uniform Pt Nanoparticles on Polydopamine-Reduced Graphene Oxide and Their Electrochemical Sensing.Electrochim. Acta. 2013, 112, 127−132. CR - 11. Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S.Graphene-Based Electrodes for Electrochemical Energy Storage.Energy Environ. Sci. 2013, 6, 1388−1414. CR - 12. Stracke, J. J.; Finke, R. G. Electrocatalytic Water Oxidation Beginning with the Cobalt Polyoxometalate Co4(H2O)2(PW9O34)210‑:Identification of Heterogeneous CoOx as the Dominant Catalyst. J.Am. Chem. Soc. 2011, 133, 14872−14875. CR - 13. Coquelard, C. C.; Sébastien Sorgues, S.; Ruhlmann, L. Photocatalysis with Polyoxometalates Associated to Porphyrins under Visible Light: An Application of Charge Transfer in Electrostatic Complexes. J. Phys. Chem. A 2010, 114, 6394−6400. CR - 14. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chem. Mater. 1999, 11, 771−778. CR - 15. Petit, C.; Bandosz, T. J. Graphite Oxide/Polyoxometalate Nanocomposites as Adsorbents of Ammonia. J. Phys. Chem. C 2009, 113, 3800−3809. CR - 16. Zhou, D.; Han, B.-H. Graphene-Based Nanoporous Materials Assembled by Mediation of Polyoxometalate Nanoparticles. Adv. Funct. Mater. 2010, 20, 2717−2722. CR - 17. Li, H. L.; Pang, S. P.; Wu, S.; Feng, X. L.; Müllen, K.; Bubeck, C. Layer-by-Layer Assembly and UV Photoreduction of Graphene-Polyoxometalate Composite Films for Electronics. J. Am. Chem. Soc.2011, 133, 9423−9429. CR - 18. Guo, S. X.; Liu, Y. P.; Lee, C.-Y.; Bond, A. M.; Zhang, J.; Geletii, Y. V.; Hill, C. L. Graphene-Supported {Ru4O4(OH)2(H2O)4}-(Gamma-SiW10O36)210− for Highly Efficient Electrocatalytic Water Oxidation. Energy Environ. Sci. 2013, 6, 2654−2663. CR - 19. Li, S. W.; Liu, R. J.; Ngo Biboum, R.; Lepoittevin, B.; Zhang, G.; Dolbecq, A.; Mialane, P.; Keita, B. First Examples of Hybrids Based on Graphene and a Ring-Shaped Macrocyclic Polyoxometalate: Synthesis, Characterization, and Properties. Eur. J. Inorg. Chem. 2013, 2013,1882−1889. CR - 20. Wang, S.; Li, H. L.; Li, S.; Liu, F.; Wu, D. Q.; Feng, X. L.; Wu, L. X. Electrochemical-Reduction-Assisted Assembly of a Polyoxometalate/Graphene Nanocomposite and Its Enhanced Lithium-Storage Performance. Chem.Eur. J. 2013, 19, 10895−10902. CR - 21. Liu, R. J.; Li, S. W.; Yu, X. L.; Zhang, G. J.; Zhang, S. J.; Yao, J. N.; Zhi, L. J. A General Green Strategy for Fabricating Metal Nanoparticles/Polyoxometalate/Graphene Tri-Component Nanohybrids: Enhanced Electrocatalytic Properties. J. Mater. Chem. 2012, 22, 3319−3322. CR - 22. Nohra, B.; El Moll, H.; Albelo, L. M. R.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Biboum, R. N.; Lemaire, J.; Keita, B.; et al. Polyoxometalate-Based Metal Organic Frameworks (Pomofs): Structural Trends, Energetics, and High Electrocatalytic Efficiency for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 13363−13374. CR - 23. Zhang, H. Y.; Miao, A. J.; Jiang, M. Fabrication, Characterization and Electrochemistry of Organic-Inorganic Multilayer Films Containing Polyoxometalate and Polyviologen Via Layer-by-Layer Self- Assembly. Mater. Chem. Phys. 2013, 141, 482−487. CR - 24. R. Contant, Relation entre les tungstophophates apparentés à l’anion PW12O403‐.Synthèse et propriétés d’un nouveau polyoxotungstophosphate lacunaire K10P2W20O70∙24H20, Can. J. Chem. 1987, 65, 568‐573. UR - https://doi.org/10.18596/jotcsa.420009 L1 - https://dergipark.org.tr/en/download/article-file/545043 ER -