TY - JOUR T1 - CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS AU - Agarwal, P. AU - Jaın, S. AU - Kıymaz, İ. O. AU - Chand, M. AU - Al-omarı, S.k.q. PY - 2015 DA - October DO - 10.36753/mathenot.421329 JF - Mathematical Sciences and Applications E-Notes JO - Math. Sci. Appl. E-Notes PB - Murat TOSUN WT - DergiPark SN - 2147-6268 SP - 45 EP - 53 VL - 3 IS - 2 LA - en AB - A remarkably large number of operational techniques have drawnthe attention of several researchers in the study of sequence of functions andpolynomials. In this sequel, here, we aim to introduce a new sequence offunctions involving the generalized Gauss hypergeometric function by usingoperational techniques. Some generating relations and finite summation formulaof the sequence presented here are also considered. KW - Special function KW - generating relations KW - generalized Gauss hypergeomtric functions KW - Sequence of function KW - finite summation formula CR - [1] Agarwal, P., Chand, M., (2013), On new sequence of functions involving pFq, South Asian Journal of Mathematics , Vol. 3 ( 3 ) : 199-210. CR - [2] Agarwal, P., Chand, M., (2013), A new sequence of functions involving pjFqj , MathematicalSciences And Applications E-Notes, Volume 1 No. 2 pp. 173-190. CR - [3] Agarwal, P., Chand, M.,(2013), Graphical Interpretation of the New Sequence of Functions Involving Mittage-Leffler Function Using Matlab, American Journal of Mathematics and Statistics 2013, 3(2): 73-83 DOI: 10.5923/j.ajms.20130302.02. CR - [4] Agarwal, P., Chand, M. and Dwivedi, S.,(2014), A Study on New Sequence of Functions Involving H-Function, American Journal of Applied Mathematics and Statistics, Vol. 2, No. ¯ 1, 34-39. CR - [5] Chak, A. M., (1956) A class of polynomials and generalization of stirling numbers, Duke J. Math., 23, 45-55. CR - [6] Chandel, R.C.S., (1973) A new class of polynomials, Indian J. Math., 15(1), 41-49. CR - [7] Chandel, R.C.S., (1974) A further note on the class of polynomials T α,kn (x, r, p), Indian J.Math.,16(1), 39-48. CR - [8] Chatterjea, S. K., (1964) On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova, 34, 180-190. CR - [9] Gould, H. W. and Hopper, A. T., (1962) Operational formulas connected with two generalizations of Hermite polynomials, Duck Math. J., 29, 51-63. CR - [10] Joshi, C. M. and Prajapat, M. L., (1975) The operator Ta,k, and a generalization of certain classical polynomials, Kyungpook Math. J., 15, 191-199. CR - [11] Mittal, H. B., (1971) A generalization of Laguerre polynomial, Publ. Math. Debrecen, 18, 53-58. CR - [12] Mittal, H. B., (1971) Operational representations for the generalized Laguerre polynomial, Glasnik Mat.Ser III, 26(6), 45-53. CR - [13] Mittal, H. B., (1977) Bilinear and Bilateral generating relations, American J. Math., 99, 23-45. CR - [14] O¨zergin, E., Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011. CR - [15] Patil, K. R. and Thakare, N. K., (1975) Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1-10. CR - [16] Shrivastava, P. N., (1974) Some operational formulas and generalized generating function, The Math. Education, 8, 19-22. CR - [17] Shukla, A. K. and Prajapati J. C., (2007) On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math., 26(2), 145-156. CR - [18] Srivastava, H. M. and Choi,J., (2012) Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York. CR - [19] Srivastava, A. N. and Singh, S. N., (1979) Some generating relations connected with a function defined by a Generalized Rodrigues formula, Indian J. Pure Appl. Math., 10(10), 1312-1317. CR - [20] Srivastava, H. M. and Singh, J. P., (1971) A class of polynomials defined by generalized, Rodrigues formula, Ann. Mat. Pura Appl., 90(4), 75-85. CR - [21] Wright, E.M., (1935a) The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10. 286-293. CR - [22] E.Özergin, Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011. CR - [23] E. Özergin, M. A. O¨zarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235(2011), 4601-4610. UR - https://doi.org/10.36753/mathenot.421329 L1 - https://dergipark.org.tr/en/download/article-file/468455 ER -