TY - JOUR T1 - Surfaces Family with Common Smarandache Geodesic Curve According to Bishop Frame in Euclidean Space AU - Atalay, Gülnur Şaffak AU - Kasap, Emin PY - 2016 DA - April DO - 10.36753/mathenot.421425 JF - Mathematical Sciences and Applications E-Notes JO - Math. Sci. Appl. E-Notes PB - Murat TOSUN WT - DergiPark SN - 2147-6268 SP - 164 EP - 174 VL - 4 IS - 1 LA - en AB - In this paper, we analyzed the problem of consructing a family of surfaces from a given some specialSmarandache curves in Euclidean 3-space. Using the Bishop frame of the curve in Euclidean 3-space,we express the family of surfaces as a linear combination of the components of this frame, and derivethe necessary and sufficient conditions for coefficents to satisfy both the geodesic and isoparametricrequirements. Finally, examples are given to show the family of surfaces with common Smarandachegeodesic curve. KW - Bishop frame CR - [1] B. O’Neill, Elementary Differential Geometry, Academic Press Inc., New York, 1966. CR - [2] M.P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1976. CR - [3] B. O’Neill, Semi-Riemannian Geometry, Academic Press , New York, 1983. CR - [4] M. Turgut, and S. Yilmaz, Smarandache Curves in Minkowski Space-time, International Journal of Mathematical Combinatorics, Vol.3, pp.51-55. CR - [5] Ali, Ahmad.T. , Special Smarandache Curves in Euclidean Space, International Journal of Mathematical Combinatorics, Vol.2, pp.30-36, 2010. CR - [6] Çetin, M. , Tunçer Y. , Karacan, M.K. , Smarandache Curves According to Bishop Frame in Euclidean Space. arxiv : 1106. 3202v1 [math. DG] , 16 Jun 2011. CR - [7] Bektaş, Ö. and Yüce, S. , Smarandache Curves According to Darboux Frame in Euclidean Space. Romanian Journal of Mathematics and Computer Science, 2013, Volume 3, Issue 1, p.48-59. CR - [8] Bayrak, N. , Bektaş, Ö. and Yüce, S. , Smarandache Curves in Minkowski Space. arxiv : 1204. 5656v1 [math. HO] , 25 Apr 2012. CR - [9] Taşköprü, K. ,and Tosun. M. , Smarandache Curves According to Sabban Frame on . Boletim da Sociedade Paraneanse de Matematica, vol,32, no.1, pp.51-59,2014. CR - [10] Çetin, M. , and Kocayiğit, H. , On the Quaternionic Smarandache Curves in Euclidean 3-Space. Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 3, 139 – 150. CR - [11] Deng, B. , 2011. Special Curve Patterns for Freeform Architecture Ph.D. thesis, Eingereicht an der Technischen Universitat Wien, Fakultat für Mathematik und Geoinformation von. CR - [12] G. J. Wang, K. Tang, C. L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Des. 36 (5)(2004) 447-459. CR - [13] E. Kasap, F.T. Akyildiz, K. Orbay, A generalization of surfaces family with common spatial geodesic, Applied Mathematics and Computation, 201 (2008) 781-789. CR - [14] C.Y. Li, R.H. Wang, C.G. Zhu, Parametric representation of a surface pencil with a common line of curvature, Comput. Aided Des. 43 (9)(2011) 1110-1117. CR - [15] L. R. Bishop, “There is more than one way to Frame a Curve”, Amer. Math. Monthly 82(3) (1975) 246-251.B. O’Neill, Semi-Riemannian Geometry, Academic Press , New York, 1983. UR - https://doi.org/10.36753/mathenot.421425 L1 - https://dergipark.org.tr/en/download/article-file/468602 ER -