TY - JOUR T1 - FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL TT - GERİ DÖNÜŞTÜRÜLMÜŞ VE DOĞAL MALZEME KULLANILARAK ÜRETİLEN SANDVİÇ KOMPOZİTLERİNİN EĞİLME DAVRANIŞLARI AU - Balcıoğlu, H Ersen PY - 2018 DA - June DO - 10.22531/muglajsci.421813 JF - Mugla Journal of Science and Technology JO - MJST PB - Mugla Sitki Kocman University WT - DergiPark SN - 2149-3596 SP - 64 EP - 73 VL - 4 IS - 1 LA - en AB - Recently, formaking the low-cost engineering materials the use of natural fibers asreinforcement in polymers composites has brought forth a lot of interest. Theuse of natural products instead of synthetic materials reduces the amount ofcarbon released into the atmosphere. Nevertheless, reuse of used materials byrecycled is important both for the environment and for economic reasons. Inthis study, flexural behaviors of sandwich composites manufactured by usingnatural and recycled material were investigated. In this context, 9 differentcore materials, which were made by using 3 different granules size (1 mm, 2 mmand 4 mm) and 3 different core thickness (4 mm, 8 mm and 12 mm), weremanufactured from waste vehicle tires. After, sandwich composites were producedby combining the core materials with natural jute fabric reinforced laminatedcomposites. In order to test the usability of the produced sandwich compositematerials as building material, the flexural behaviors of the sandwichcomposite were investigated under three-point bending load. Test results showthat flexural behavior of the material varies according to the granular sizeand thickness of the core material. KW - Sandwich composite KW - flexural modulus KW - flexural strength KW - recycling KW - natural fibers KW - granule size KW - core thickness N2 - Son yıllarda, düşükmaliyetli mühendislik malzemeleri üretebilmek için polimer malzemelerde takviyeolarak doğal fiberler kullanımı üzerine ilgi artmaktadır. Sentetik malzemeleryerine doğal ürünlerin kullanılması atmosfere salınan karbon miktarını azaltmaktadır.Bununla birlikte, kullanılmış malzemelerin geri dönüştürülerek yenidenkullanılması hem çevre hem de ekonomik nedenlerden dolayı önemlidir. Buçalışmada, doğal ve geri dönüştürülmüş malzeme kullanılarak üretilen sandviçkompozitlerin eğilme davranışları incelenmiştir. Bu bağlamda, 3 farklı granülboyutu (1 mm, 2 mm ve 4 mm) ve üç farklı çekirdek kalınlığı (4 mm, 8 mm ve 12mm) kullanılarak yapılan dokuz farklı çekirdek malzemesi kullanılmış taşıtlastiğinden imal edilmiştir. Daha sonra çekirdek malzemeler doğal jüt kumaştakviyeli tabakalı kompozitler ile birleştirilerek sandviç kompozitlerüretildi. Üretilen sandviç kompozit malzemelerin yapı malzemesi olarakkullanılabilirliğini test etmek için, üç nokta eğilme yükü altında eğilme davranışlarıincelenmiştir. Test sonuçları, malzemenin eğilme davranışının, çekirdekmalzemenin tanecik boyutuna ve kalınlığına göre değiştiğini göstermektedir. CR - [1] Elanchezhian, C. Ramnath, B. Ramakrishnan, V.G. Rajendrakumar, M. Naveenkumar, V. and Saravanakumar, M.K., “Review on mechanical properties of natural fiber composites.,” Mater. Today Proc., vol. 5, no. 1, pp. 1785–1790, 2018. CR - [2] Rajesh M. and Kanish, T., “Mechanical Properties of Natural Fiber Sandwich Composite: Effect of Core Layer,” Mech. Mater. Sci. Eng. MMSE J. Open Access, vol. 9, pp. 1–5, 2017. CR - [3] Torres, J. P. Vandi, L.-J. Veidt, M. and Heitzmann, M. T., “The mechanical properties of natural fibre composite laminates: A statistical study,” Compos. Part Appl. Sci. Manuf., vol. 98, pp. 99–104, Jul. 2017. CR - [4] A. Sailesh, R. Arunkumar, and S. Saravanan, “Mechanical Properties and Wear Properties of Kenaf – Aloe Vera – Jute Fiber Reinforced Natural Fiber Composites,” Mater. Today Proc., vol. 5, pp. 7184–7190, 2018. CR - [5] Rajesh M. andPitchaimani, J., “Mechanical Properties of Natural Fiber Braided Yarn Woven Composite: Comparison with Conventional Yarn Woven Composite,” J. Bionic Eng., vol. 14, no. 1, pp. 141–150, Jan. 2017. CR - [6] Wong, K. J. Zahi, S. Low, K. O. and Lim, C. C., “Fracture characterisation of short bamboo fibre reinforced polyester composites,” Mater. Des., vol. 31, no. 9, pp. 4147–4154, Oct. 2010. CR - [7] Campilho, R. D. S. G. Moura, D. C. Gonçalves, D. J. S. da Silva, J. F. M. G. Banea, M. D. and da Silva, L. F. M., “Fracture toughness determination of adhesive and co-cured joints in natural fibre composites,” Compos. Part B Eng., vol. 50, pp. 120–126, Jul. 2013. CR - [8] Czajczyńska, D. Krzyżyńska, R. Jouhara, H. and Spencer, N., “Use of pyrolytic gas from waste tire as a fuel: A review,” Energy, vol. 134, pp. 1121–1131, Sep. 2017. CR - [9] United States Environmental Protection Agenc, Scrap Tire Handbook on Recycling Management for US and Mexico. Washington, 2010. CR - [10] Sienkiewicz, M. Kucinska-Lipka, J. Janik, H. and Balas, A. “Progress in used tyres management in the European Union: A review,” Waste Manag., vol. 32, no. 10, pp. 1742–1751, Oct. 2012. CR - [11] Wimmer Z. and Zarevúcka, M., “A review on the effects of supercritical carbon dioxide on enzyme activity,” Int. J. Mol. Sci., vol. 11, no. 1, pp. 233–253, 2010. CR - [12] Vitale, J. P. Francucci, G. Xiong, J. and Stocchi, A., “Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels,” Compos. Part Appl. Sci. Manuf., vol. 94, pp. 217–225, Mar. 2017. CR - [13] Mallaiah, S. Sharma, K. V. and Krishna, M., “Development and comparative studies of bio-based and synthetic fiber based sandwich structures,” Int J Soft Compos Eng, vol. 2, pp. 332–5, 2012. CR - [14] Sargianis, J. J. Kim, H.-I. Andres, E. and Suhr, J., “Sound and vibration damping characteristics in natural material-based sandwich composites,” Compos. Struct., vol. 96, pp. 538–544, Feb. 2013. CR - [15] Reis, L. Carvalho, P. Alves, C. and Freitas, M., “Mechanical Behaviour of Sandwich Beams Manufactured with Glass or Jute Fiber in Facings and Cork Agglomerates as Core,” Mater. Sci. Forum, vol. 636–637, pp. 245–252, Jan. 2010. CR - [16] Dweib, M. A. Hu, B. O’Donnell, A. Shenton, H. W. and Wool, R. P. , “All natural composite sandwich beams for structural applications,” Compos. Struct., vol. 63, no. 2, pp. 147–157, Feb. 2004. CR - [17] Petrone, G. Rao, S. De Rosa, S. Mace, B. R. Franco, F. and Bhattacharyya, D., “Initial experimental investigations on natural fibre reinforced honeycomb core panels,” Compos. Part B Eng., vol. 55, pp. 400–406, Dec. 2013. CR - [18] Du, Y. Yan, N. and Kortschot, M. T., “Light-weight honeycomb core sandwich panels containing biofiber-reinforced thermoset polymer composite skins: Fabrication and evaluation,” Compos. Part B Eng., vol. 43, no. 7, pp. 2875–2882, Oct. 2012. CR - [19] Karaduman Y. and Onal, L., “Flexural behavior of commingled jute/polypropylene nonwoven fabric reinforced sandwich composites,” Compos. Part B Eng., vol. 93, pp. 12–25, May 2016. CR - [20] ASTM, C.-393 “Standard Test Method for Flexural Properties of Sandwich Constructions,” ASTM International, 2000. CR - [21] Karabulut, N. Aktaş, M. and Balcıoğlu, H. E., “Surface Modification Effects on the Mechanical Properties of Woven Jute Fabric Reinforced Laminated Composites,” J. Nat. Fibers, pp. 1–15, Jan. 2018. CR - [22] Sideridis E. and Papadopoulos, G. A., “Short-beam and three-point-bending tests for the study of shear and flexural properties in unidirectional-fiber-reinforced epoxy composites,” J. Appl. Polym. Sci., vol. 93, no. 1, pp. 63–74, Jul. 2004. CR - [23] Setyawan, P. Sugiman, D. and Saputra, Y., “Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites,” 2016, p. 040016. CR - [24] ASTM, D-2344 “Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” ASTM International, 2000. UR - https://doi.org/10.22531/muglajsci.421813 L1 - https://dergipark.org.tr/en/download/article-file/489217 ER -