TY - JOUR T1 - With Copula Method Modeling of daily maximum and minimum temperature changes in Bitlis province TT - Bitlis İlindeki Günlük Maksimum ve Minumum Sıcaklık Değişimlerinin Copula Metodu ile Modellenmesi AU - Metin Karakaş, Ayşe PY - 2018 DA - December Y2 - 2018 DO - 10.17798/bitlisfen.423871 JF - Bitlis Eren Üniversitesi Fen Bilimleri Dergisi PB - Bitlis Eren University WT - DergiPark SN - 2147-3129 SP - 268 EP - 275 VL - 7 IS - 2 LA - en AB - Thispaper aims to examine the relationship between daily maximum and minimum temperatures of Bitlis in Turkey between 2012-2017 years withCopula method. To present the relationship between the variables, we use copulafamilies such as; Gumbel, Clayton, Frank,Joe, Gaussian and Survival Clayton copula. To explain dependence structures of the dataset and to determine parameters of Gumbel,Clayton, Frank, Joe, Gaussian andSurvival Clayton copula families, we calculate Kendall Tau and Spearman Rhovalues which are nonparametric. With he help of Kolmogorov Smirnov, Cramer Von Mises which aregoodness of fit test, Maximum likelihoodmethod, Akaike information Criteria ad Bayes information criteria, we find thesuitable copula family for this data set.The results show that there is a strong dependence between daily maximumand minimum temperatures of Bitlis between 2012-2017 years. KW - Copula functions KW - Kendall Tau KW - Spearman Rho KW - Goodness of fit test KW - Akaike information criteria N2 - Bu makalenin amacı Bitlisin 2012-2017 yıllarıarasındaki günlük maksimum ve minumum sıcaklıkları arasındaki ilişkiyi Copulamethodu ile açıklamaktır. İlişkiyi açıklamak için çeşitli copula ailelerikullanılmıştır. Bunlar; Gumbel, Clayton,Frank, Joe, Gaussian ve Survival Claytondur.Bağımlılık yapısını açıklamak veGumbel, Clayton, Frank, Joe, Gaussian veSurvival Clayton copula ailelerinin parametrelerini belirlemek için parametrik olmayan metod olan KendallTau ve Spearman Rho değerleri hesaplanmıştır. Uyum iyiliği testleri KolmogorovSmirnov, Cramer on Mises, maksimumoalabilirlik metodu, Akaike blgi kriteri ve Bayes bilgi kriteri yardımıyla veriseti için uygun copula ailesi bulunmuştur. Sonuçlar Bitlisin 2012 yılı ile 2017yılları arasında günlük maksimum ve minumum sıcaklık değişimleri için güçlü birbağımlılık olduğunu göstermiştir. CR - 1. Sklar 1973. A. Random variables, joint distribution functions, and copulas. Kybernetika, 1973 9(6), 449-460.2. Genest 1986. C., & MacKay, J. The joy of copulas: Bivariate distributions with uniform marginal. The American Statistician, 40(4), 280-283.3. Genest, C., & Rivest, L. 1993. P. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88(423), 1034-10434. Justel, A., Peña, D., & Zamar, R. 1997. A multivariate Kolmogorov-Smirnov test of goodness of & Probability Letters Statistics, 35(3), 251-259.5. Nelsen 1999. R. B. Introduction. An Introduction to Copulas, Springer New York.6. Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., & Roncelli, T. 2000. Copulas for finance-a reading guide and some applications.7. Frey, J. D. R., McNeil, A. J., Nyfeler, M. 2001. Copulas and credit models. Risk, 10(111114.10).8. Kim, G., Silvapulle, M. J., & Silvapulle, P. 2007. Comparison of semiparametric and parametric methods estimating copulas. Computational Statistics & Data Analysis, 51(6), 2836-2850.9. Genest, C., & Favre, A. C. 2007. Everything you always wanted to know about copula modeling but were afraid to ask. Journal of hydrologic engineering, 12(4), 347-368.10. Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. 2007. Extremes in nature: an approach using copulas, Springer Science & Business Media.11. Berg, Daniel 2009. Copula goodness-of-fit testing: an overview and power comparison. The European Journal of Finance., 15, 675-701.12. Fermanian 2005. J. D. Goodness-of-fit tests for copulas. Journal of multivariate analysis, 95(1), 119-152.13. Genest, C., & Rémillard, B. 2008. Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. In Annals de l'Institut Henri Poincaré, Probabilities et Statistiques, 44(6), 1096-1127.14. Genest, C., Rémillard, B., Beaudoin, D. 2009. Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and economics, 44(2), 199-213.15. Huard, D., Évin, G., Favre, A. C. 2006. Bayesian copula selection. Computational Statistics & Data in Analysis, 51(2), 809-822.16. Jordanger, L. A., & Tjostheim, D. 2014. Model selection of copulas: AIC versus a cross validation copula information criterion. Statistics & Probability Letters, 92, 249-255.17. Kojadinovic, I., Yan, J., & Holmes, M. 2011. Fast large-sample goodness-of-fit tests for copulas. Statistica Sinica, 841-871.18. Kojadinovic, I., & Yan, J. 2011. A goodness-of-fit test for multivariate multipara meter copulas based on a multiplier central limit theorems, Statistics and Computing, 21(1), 17-30. UR - https://doi.org/10.17798/bitlisfen.423871 L1 - https://dergipark.org.tr/en/download/article-file/609080 ER -