TY - JOUR T1 - Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces AU - Weng, Shengquan AU - Wu, Dingping PY - 2018 DA - August JF - Results in Nonlinear Analysis JO - RNA PB - Erdal KARAPINAR WT - DergiPark SN - 2636-7556 SP - 49 EP - 57 VL - 1 IS - 2 LA - en AB - In this paper, a new modified proximal point algorithm is proposed for finding a common element of the set of fixed points of a single-valued nonexpansive mapping, and the set of fixed points of a multivalued nonexpansive mapping, and the set of minimizers of convex and lower semicontinuous functions. We obtain convergence of the proposed algorithm to a common element of three sets in CAT(0) spaces. KW - CAT(0) space KW - proximal point algorithm KW - fixed point KW - resolvent identity KW - functional analysis CR - [1] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Etudes Sci. Publ. Math. 41(1972), 5-251. CR - [2] S. Dhompongsa, B. Panyanak, On ∆−convergence theorems in CAT(0) spaces.Comput. Math. Appl.56(2008), 2572-2579. CR - [3] M. Ba˘ cák, The proximal point algorithm in metric spaces. Isr. J. Math. 194(2013),689-701. CR - [4] O. Guler, On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim.29(1991), 403-419. CR - [5] D. Ariza-Ruiz, L. Leustean, G. Lopez, Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math. Soc.366 (2014), 4299-4322. CR - [6] J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70(1995), 659-673. CR - [7] S. Suantai, W. Phuengrattana, Proximal Point Algorithms for a Hybrid Pair of Nonexpansive Single-Valued and MultiValued Mappings in Geodesic Metric Spaces. (2017). CR - [8] T. Rockafellar, R.J. Wets, Variational Analysis. Springer, Berlin(2005) CR - [9] S. Dhompongsa, W.A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal.65 (2006), 762-772. CR - [10] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces. Nonlinear Anal. 68 (2008), 3689-3696. CR - [11] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal.8(2007), 35-45. CR - [12] L. Ambrosio, N. Gigli, G. Savare, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zrich, 2nd edn. Birkhuser, Basel (2008). UR - https://dergipark.org.tr/en/pub/rna/issue//426161 L1 - https://dergipark.org.tr/en/download/article-file/476440 ER -