TY - JOUR T1 - DMLS Eklemeli İmalatta Süreç Ve Maliyet Modeli Geliştirilmesi TT - DMLS Additive Manufacturing Process and Cost Model Development AU - Kayacan, Mevlüt Yunus AU - Yılmaz, Nihat PY - 2019 DA - September DO - 10.2339/politeknik.428093 JF - Politeknik Dergisi PB - Gazi University WT - DergiPark SN - 2147-9429 SP - 763 EP - 770 VL - 22 IS - 3 LA - tr AB - Bu çalışmada son yıllarda gelişim göstererek endüstrinin temel imalatmetotlarından biri haline gelen eklemeli imalat üzerine, imalat süresi,süreçleri ve maliyetler ekseninde çeşitli analizler gerçekleştirilmiştir. Tozyatak birleştirme teknolojilerinden bir tanesi olan “Doğrudan metal lazersinterleme” (DMLS) metodunun işlem süreleri ve süreç analizinin yapılmasısonucunda literatürde yer alan mevcut denklemler ve ilave olarak imalatın tümadımlarını ve her türlü gideri hesaplamaya dâhil ederek genel bir maliyet vesüreç hesaplaması denklemi türetilmiştir. Elde edilen denklem Türkiye örneklemiüzerinden kontrol edilmiş ve Türkiye şartlarına yönelik bir çalışma yapılmıştır.Geliştirilen model ile imal edilmesi planlanan parçaların DMLS ile eklemeliimalat süreleri, imalat verimliliği ve etkin tezgâh kullanımı hakkındakiverilere ulaşabilmek mümkün hale gelmiştir. Bunların yanında imalat tezgâhlarınamortisman hesapları ve başa baş noktası analizleri farklı işletme şartlarındaincelenerek gerçekleştirilmiştir. KW - DMLS KW - eklemeli imalat KW - lazer toz yatak KW - imalat süresi KW - imalat maliyeti N2 - In this study, various analyzes have been carried out in terms ofmanufacturing time, processes and costs on the additive manufacturing, whichhas become one of the basic manufacturing methods of the industry. As a resultof the processing times and process analysis of the "direct metal lasersintering" (DMLS) method, one of the powder bed fusion technologies, ageneral cost and process calculation equation has been derived, including theexisting equations in the literature, plus all steps of manufacturing and allsorts of calculations . The resulting equation was checked on the samplingTurkey and a study was carried out for the conditions of Turkey. With thedeveloped model, it is made possible to reach the data about the manufacturingtime, manufacturing efficiency and effective use of the machine with DMLS partsplanned to be manufactured. In addition, amortization calculations andhead-to-head analyzes of manufacturing machines were carried out underdifferent operating conditions. CR - DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W., “Additive manufacturing of metallic components – Process, structure and properties”, Progress in Materials Science journal, 92, 112–224, (2018). CR - Gu, D. D., Meiners, W., Wissenbach, K., Poprawe, R., “Laser additive manufacturing of metallic components: materials, processes and mechanisms”, International Materials Reviews, 57, 133–164, (2012). CR - Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C., “Additive manufacturing of metals”, Acta Materialia, 117, 371–392, (2016). CR - Wong, K. V., Hernandez, A., “A Review of Additive Manufacturing”, International Scholarly Research Network ISRN Mechanical Engineering, Volume 2012, 1–10, (2012). CR - Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., Clare, A. T., “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing”, Materials and Design, 95 (2016) 431–445, (2016). CR - Frazier, W. E., “Metal additive manufacturing: A review”, Journal of Materials Engineering and Performance, 23, 1917–1928, (2014). CR - Kayacan M. Y., Sayer, S., Ürün geliştirme sürecinde hızlı prototip uygulamaları. Plastik Dergisi, 125, 122–130, (2014). CR - ASTM International F2792-12a, “Standard Terminology for Additive Manufacturing Technologies”, (2013). CR - Manfredi, D., Calignano, F., Ambrosio, E. P., Krishnan, M., Canali, R., Biamino, S., Pavese, M., Atzeni, E., Luliano, L., Fino, P. Badini, C., “Direct Metal Laser Sintering: An additive manufacturing technology ready to produce lightweight structural parts for robotic applications”, Metallurgia Italiana,105, 15–24, (2013). CR - Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., Rosamond, E., Hague, R., “Combined Build–Time, Energy Consumption and Cost Estimation for Direct Metal Laser Sintering”, Proceedings of Twenty Third Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, 53, 1689–1699, (2012). CR - Barclift, M., Joshi, S., Simpson, T. , Dickman, C., “Cost Modeling and Depreciation for Reused Powder Feedstocks in Powder Bed Fusion Additive Manufacturing”, Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 2007–2028, (2016). CR - Baumers, M., Dickens, P., Tuck, C., Hague, R., “The cost of additive manufacturing: machine productivity, economies of scale and technology-push”, Technological Forecasting & Social Change, 102, 193–20, (2016). CR - Amini, M., “Time Estimation Additive Manufacturing”, Master of science in technology, Texas State University, (2014). CR - Thomas, D., Gilbert, S., “Costs and Cost Effectiveness of Additive Manufacturing - A Literature Review and Discussion”, NIST Special Publication, 1176, 1–77, (2014). CR - Piili, H., Happonen, A., Väistö, T., Venkataramanan, V., Partanen, J., “Cost Estimation of Laser Additive Manufacturing of Stainless Steel”, Physics Procedia, 78, 388–396, (2015). CR - Sahu, A. K., Narang, H. K., Sahu, A. K., Sahu, N. K., “Machine economic life estimation based on depreciation-replacement model”, Cogent Engineering, 3, 1–15, (2016). UR - https://doi.org/10.2339/politeknik.428093 L1 - https://dergipark.org.tr/en/download/article-file/533974 ER -