TY - JOUR T1 - An Investigation of Thermal Comfort for Mold, Welding and Turning Technicians and the Effects on Performance in Naturally Ventilated Area AU - Sökmen, Kemal Furkan PY - 2019 DA - August Y2 - 2019 DO - 10.16984/saufenbilder.430811 JF - Sakarya University Journal of Science JO - SAUJS PB - Sakarya University WT - DergiPark SN - 2147-835X SP - 559 EP - 568 VL - 23 IS - 4 LA - en AB - Inthis study, thermal comfort measurements were made for mold, welding, andturning technicians in naturally ventilated industrial establishments.Metabolic rates were determined as 100 W/m2forwelding and turningand 190 W/m2 for mold technicians. The clothing insulationfactor wascalculated as 0.68 clo. The measurements were done in 3 differentcompanies on17-19 July 2017during working hours withoutstopworking. In terms of PMV findings, itwasdetermined that the thermalcomfort conditions are not met according to the ASHRAE standard.As forthe WBGT value, it wasdeterminedthat there was heat pressure on17.07.2017 andthere wasno heat pressure on 18.07.2018on allthe employees. On 19.07.2017, it was determined that there was a heat pressureafter 13:00 for mold technicians and after 17:00 for welding and turningtechnicians. Calculated PMV values were compared with the survey resultsand ıt was determined that results were compatible with values. Itwasmade firmthat people who were overweight and obese felt theirworking environment warmer than normalweightworker.Theperformance lossratios which aredependent on ambient temperature were calculated and compared with theliteratureand was determined that they are compatible. KW - Ergonomics of thermal environment KW - employee performance KW - heat stress CR - [1] D. Holm و F. A. Engelbrecht, "Practical choice of thermal comfort scale and range in naturally ventilated buildings in South Africa", Journal of the South African Institution of Civil Engineering, 47,2,. 9–14, 2005.[2] K. C. Parsons, "Environmental ergonomics: A review of principles, methods and models", Applied Ergonomics,31, 6, 581–594, 2000.[3] J. Pfafferott, S. Herkel, J. Wapler, "Thermal building behaviour in summer: Long-term data evaluation using simplified models", Energy and Buildings,37,8, 844–852, 2005.[4] J. Skoog, N. Fransson, L. Jagemar, "Thermal environment in Swedish hospitals: Summer and winter measurements", Energy and Buildings, 37, 8, 872–877, 2005.[5] Ansi/Ashrae, "ANSI/ASHRAE 55:2004 Thermal Environmental Conditions for Human Occupancy", Ashrae, 2004, 30, 2004.[6] ISO 7730 International Standard, "Moderate thermal environments - Determination of the PMV and PPD indices and specification of the conditions for thermal comfort". 32, 1994.[7] P. O. Fanger, Thermal comfort : analysis and applications in environmental engineering. New York: McGraw-Hill, 1970.[8] S. H. Ho, L. Rosario, M. M. Rahman, "Thermal comfort enhancement by using a ceiling fan", Applied Thermal Engineering, 29, 8–9, 1648–1656, 2009.[9] G. M. Budd, "Wet-bulb globe temperature (WBGT)—its history and its limitations", Journal of Science and Medicine in Sport, 11, 1, 20–32, 2008.[10] B. Lemke, T. Kjellstrom, "Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment", Industrial Health, 50, 4, 267–278, 2012.[11] W. J. Fisk, A. H. Rosenfeld, "Estimates of Improved Productivity and Health from Better Indoor Environments", Indoor Air, 7, 3, 158–172, 1997.[12] T. Kjellstrom, I. Holmer, B. Lemke, "Workplace heat stress, health and productivity - an increasing challenge for low and middle-income countries during climate change", Global health action, 2, Special Issue, 2009.[13] A. A. Shikdar, N. M. Sawaqed, "Worker productivity, and occupational health and safety issues in selected industries", Computers and Industrial Engineering, 45, 4, 563–572, 2003.[14] M. Krishnamurthy, P. Ramalingam, K. Perumal, L. P. Kamalakannan, J. Chinnadurai, R. Shanmugam, K. Srinivasan, V. Venugopal, "Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India", 2017.[15] HSE, "Thermal comfort in the workplace: Guidance for employers", 1999.[16] Y. Epstein D. S. Moran, "Thermal comfort and the heat stress indices.", Industrial health, 44, 3, 388–398, 2006.[17] W. . Fox, "Human Performance in the Cold", The Journal of the Human Factors and Ergonomics, 9, 3, 203–220, 1967.[18] D. A. McIntyre, Indoor Climate. London, United Kingdom: Elsevier, 1980.[19] K. . Parsons, Human Thermal Environments. London: Taylor & Francis, 1993.[20] P. Roelofsen, "The impact of office environments on employee performance: The design of the workplace as a strategy for productivity enhancement", Journal of Facilities Management, 1, 3, 247–264, 2002.[21] J. J. Pilcher, E. Nadler, و C. Busch, "Effects of Hot and Cold Temperature Exposure on Performance: a Meta-Analytic Review", Ergonomics, 45, 10, 682–698, 2002.[22] G. A. Berglund L, Gonzales R, "Predicted human performance decrement from thermal discomfort and ET*", 1990, vol 1:215-220.[23] O. Seppänen, W. J. Fisk, D. Faulkner, "Cost Benefit Analysis of the Night-Time Ventilative Cooling in Office Building", Proceedings of the Healthy Buildings 2006 Conference, 243–247, 2006.[24] Manuel C.Gameiro, "SPREADSHEETS FOR THE CALCULATION OF THERMAL COMFORT INDICES PMV AND PPD", 2014.[25] P. O. Fanger, "Assessment of thermal comfort practice", Occupational and Environmental Medicine,30, 313–324, 1973.[26] TS EN 27243, TS EN 27243, 27243, 1993. 2002.[27] K. Parsons, "Heat stress standard ISO 7243 and its global application.", Industrial health, 44, 3, 368–379, 2006.[28] I. Atmaca, O. Kaynakli, و A. Yigit, "Effects of radiant temperature on thermal comfort", Building and Environment, 42,9, 3210–3220, 2007.[29] O. Seppanen, W. J. Fisk, Q. H. Lei, O. Seppänen, "Title Room temperature and productivity in office work Room Temperature and Productivity in Office Work Room Temperature and Productivity in Office Work", 2006. UR - https://doi.org/10.16984/saufenbilder.430811 L1 - https://dergipark.org.tr/en/download/article-file/649056 ER -