@article{article_441096, title={Robust Bayesian Regression Analysis Using Ramsay-Novick Distributed Errors with Student-t Prior}, journal={Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics}, volume={68}, pages={602–618}, year={2019}, DOI={10.31801/cfsuasmas.441096}, author={Kaya, Mutlu and Çankaya, Emel and Arslan, Olcay}, keywords={Robust bayesian regression,Ramsay-Novick,heavy-tailed distribution,Student-t prior,prior robustness}, abstract={This paper investigates bayesian treatment of regression modelling with Ramsay - Novick (RN)  distribution  specifically  developed for robust  inferential procedures. It falls into the category of the so-called heavy-tailed distributions generally accepted as outlier resistant densities. RN is obtained by coverting the usual form of a non-robust density to a robust likelihood through  the  modification of its unbounded influence function. The  resulting  distributional form  is  quite  complicated  which  is  the  reason  for  its limited  applications   in  bayesian  analyses of real problems. With the help of innovative Markov Chain Monte Carlo (MCMC)  methods  and  softwares  currently  available,  here   we   first suggested  a  random  number  generator for  RN  distribution.  Then,  we developed  a  robust bayesian modelling with RN distributed errors and Student-t prior. The  prior  with  heavy-tailed  properties  is  here  chosen to  provide   a   built-in protection  against   the   misspecification   of   conflicting  expert  knowledge  (i.e. prior robustness). This is particularly useful to avoid accusations of too much subjective bias in the prior specification.  A  simulation  study conducted for performance assessment  and   a  real-data  application  on   the   famously   known  "stack loss"  data  demonstrated   that  robust  bayesian  estimates  with  RN likelihood and  heavy-tailed  prior are robust against outliers in all directions and inaccurately specified priors.}, number={1}, publisher={Ankara University}