TY - JOUR T1 - Numerical Investigation of Multiphase Transport Model for Hot-Air Drying of Food TT - Zorlanmış Taşınım ile Farklı Geometrik Şekilli Gıda Ürünlerinin Kurutulmasının Gözenekli Ortam Yaklaşımı ile Nümerik İncelenmesi AU - Etemoglu, Akin Burak AU - Turkan, Burak AU - Canbolat, Ahmet Serhan PY - 2019 DA - December Y2 - 2018 DO - 10.15832/ankutbd.441925 JF - Journal of Agricultural Sciences JO - J Agr Sci-Tarim Bili PB - Ankara University WT - DergiPark SN - 1300-7580 SP - 518 EP - 529 VL - 25 IS - 4 LA - en AB - Drying is widely used to prevent microbial spoilage by evaporating the determined amount of liquid in the food sample.In order to reduce energy consumption and increase food flavor quality, modeling the drying process is crucial. In theliterature, different approaches are used for investigation of drying characteristic. Among these approaches, the porousmedia approach have complex phenomena. Molecular diffusion for gases (water vapor and air), capillary diffusion forliquid (water), and convection mechanisms (Darcy flow) were used in drying model in porous media. In this study,firstly, the effect of shrinkage on drying of porous media was investigated. Non-linear partial differential equations for airand food material in the drying problem were solved numerically for non-steady state condition. The shrinkage effect inthe drying process was studied by using the ALE (Arbitrary Lagrangian Eulerian) method. In this study, air velocities of0.5, 0.8 and 1 m s-1, air temperatures of 40, 50 and 60 °C and the geometric forms of rectangular, cylindrical and squarewere selected for hot air drying process. The fastest drying was obtained at square shape food at the air temperature of60 °C and the air velocity of 0.5 m s-1. The analysis result showed that the air velocity and temperature have effect onthe drying. KW - Heat and mass transfer; Drying; Numerical modelling; Shrinkage N2 - Kurutma gıda ürününden sıvı miktarının buharlaştırılarak mikrobiyalbozulmayı önlemek için yaygın şekilde kullanılır. Enerji tüketimini azaltmak vegıda kalitesini artırmak için kurutma sürecinin modellenmesi çok önemlidir.Literatürde kurutma karakteristiklerinin araştırılmasında farklı yaklaşımlarkullanılmıştır. Bu yaklaşımlar arasında gözenekli ortam yaklaşımı karmaşık birmekanizmaya sahiptir. Gözenekli ortamda kurutma modelinde gazlar (su buharı vehava) için moleküler difüzyon, sıvı (su) için difüzyon ve konveksiyonmekanizmaları kullanılmaktadır. Bu çalışmada öncelikle gözenekli malzemeninkurutulması üzerinde büzülme etkisi araştırıldı. Kurutma probleminde hava vegıda ürünü için lineer olmayan kısmi diferansiyel denklemleri zamana bağlıolarak çözüldü. Kurutma işlemindeki büzülme etkisi ALE (Arbitrary LagrangianEulerian) metodu kullanılarak araştırıldı. CR - Machado M D, Oliviera F A R, Gekas V & Singh R P (1998). Kinetics of moisture uptake and soluble-solids loss by puffed breakfast cereals immersed in water. International Journal of Food Science and Technology, 33(3), 225–237 CR - Sanjuan N, Simal S, Bon J & Mulet A (1999). Modelling of broccoli stems rehydration process. Journal of Food Engineering, 42, 27–31 CR - A K Datta (2007). Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. Journal of Food Engineering, vol. 80 CR - Curcio S, Aversa M, Calabro V & Iorio G (2008). Simulation of food drying: FEM analysis and experimental validation. Journal of Food Engineering 87:541–553 CR - Lima A G B, Queiroz M R & Nebra S A (2002). Simultaneous moisture transport and shrinkage during drying solids with ellipsoidal configuration. Chemical Engineering Journal 86: 83–85 CR - Defraeye T, Nicolaï, B, Mannes D, Aregawi W, Verboven P & Derome D (2016). Probing inside fruit slices during convective drying by quantitative neutron imaging. Journal of Food Engineering 178,198-202 CR - Udayraj Md A, Mishra R K Chandramohan V P & Talukdar P (2014). Numerical modeling of convective drying of food with spatially dependent transfer coefficient in a turbulent flow field. International Journal of Thermal Sciences 78, 145 CR - Nguyen H M & Price E W (2007). Air drying of banana: Influence of experimental parameters, slab thickness, banana maturity and harvesting season. Journal of Food Engineering 79 (1): 200-207 CR - Yan Z, Sousa-Gallagher M J & Oliveira F A R (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of Food Engineering 84:430–440 CR - Ruhanian S & Movagharnejad K (2016). Mathematical modeling and experimental analysis of potato thin-layer drying in an infrared-convective dryer Engineering in Agriculture. Environment and Food 9 , 84-91 CR - Bird R B, Stewart W E & Lightfoot E N (1960). Transport Phenomena. John Wiley & Sons, London, UK CR - Welty J, Wicks C, Wilson R & Rorrer G (2001). Fundamentals of Momentum, Heat, and Mass Transfer. New York: John Wiley and Sons CR - Datta A K (2007). Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: Property data and representative results. Journal of Food Engineering, vol. 80 CR - Comsol Multiphysics 5.3 (2017). Heat Transfer Model Library, Heat Transfer Module User’s Guide, Chemical Reaction Engineering Module User’s Guide CR - Karim M A & Hawlader M N A (2005). Mathematical modelling and experimental investigation of tropical fruits drying. International Journal of Heat and Mass Transfer 48:(23) 4914-4925 CR - Desmorieux H & Moyne C (1992). Analysis of dryer performance for tropical foodstuffs using the characteristic drying curve concept, in Drying A.S. Mujumder, Editor, 834-843 CR - Bart-Plange A, Addo A, Ofori H & Asare V (2012). Thermal properties of gros michel banana grown in Ghana. ARPN Journal of Engineering and Applied Sciences 7 (4) CR - Liu J Y & Cheng S (1991). Solutions of Luikov Equations of Heat and Mass Transfer in Capillary Porous Bodies. Int.J. Heat Mass Transfer 34, 7, pp 1747 1754 CR - Kumar C, Millar G J & Karim M A (2015). Effective Diffusivity and Evaporative Cooling in Convective Drying of Food Material. Drying Technology 33:227-237 CR - Zhang W & Mujumdar A S (1992). Deformation and stress analysis of porous capillary bodies during intermittent volumetric thermal drying. Drying Technology 10:(2), 421–443 UR - https://doi.org/10.15832/ankutbd.441925 L1 - https://dergipark.org.tr/en/download/article-file/871258 ER -