TY - JOUR T1 - Sutton-Chen Potansiyel Fonksiyonu ile Cu Elementinin Örgü Kararlılığının İncelenmesi AU - Kazanç, Sefa PY - 2019 DA - January JF - Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi JO - DEUFMD PB - Dokuz Eylul University WT - DergiPark SN - 1302-9304 SP - 149 EP - 154 VL - 21 IS - 61 LA - tr AB - Bu çalışmada 4000 Cu atomu basit kübik, cisim merkezli kübik,yüzey merkezli kübik ve elmas yapının örgü noktalarına yerleştirilerekSutton-Chen potansiyel fonksiyonunun bu atomik sistem için ürettiği kararlıörgü yapısı belirlendi. Kullanılan potansiyel fonksiyonu ifadesinde gömmeenerjisinin ve yük yoğunluğunun hacimle, ikili etkileşme teriminin atomlararasımesafe ve gömme enerjisinin yük yoğunluğu ile değişimi hesaplandı. Ayrıca modelsisteme Bain zorlanması ve kesme zoru uygulanarak kohesif enerjideki değişimlerbelirlendi. Gömülmüş atom metodunun Sutton-Chen türü potansiyel fonksiyonununbu atomik sistemin yapısal özelliklerinin belirlenmesi için uygun değerlerüretebildiği görüldü. KW - Sutton-Chen potansiyel fonksiyonu KW - katı-katı faz dönüşümleri KW - Bain zorlanması KW - kesme zoru CR - [1] Donato, M.G., Ballone, P. and Giaquinta P.V. 2000. Bain transformation in CuxPd1-x (x~0.5) alloys: An embedded atom study, Phys. Rev. B, 61(1), 24-27. DOI: 10.1103/PhysRevB.61.24 CR - [2] Christian, J.W. 1994. Crystallographic theories, interface structure, and transformation mechanism, Metall. and Mater. Trans. A, 25A, 1821-1836.DOI:https://doi.org/10.1007/BF02649031 CR - [3] Kazanc, S., Ciftci, Y.O., Colakoglu, K., Ozgen, S. 2006. Temperature and pressure dependence of the some elastic and lattice dynamical properties of copper: a molecular dynamics study, Physica B, 381, 96–102. DOI: https://doi.org/10.1016/j.physb.2005.12.259 CR - [4] Dahal, S., Kafle, G., Kaphle, G. C. and Adhikari, N. P. 2014. Study of Electronic and Magnetic Properties of CuPd, CuPt, Cu3Pd and Cu3Pt: Tight Binding Linear Muffin-Tin Orbitals Approach Journal of Institute of Science and Technology, 19(1), 137-144.DOI:http://dx.doi.org/10.3126/jist.v19i1.13839 CR - [5] Karavaev, A.V., Dremov, V.V., Ionov, G.V. 2017. Atomistic simulations of dislocation dynamics in d-Pu-Ga alloys, Journal of Nuclear Materials, 496, 85-96. DOI: 10.1016/j.jnucmat.2017.09.005 CR - [6] Mittal, R., Gupta, M.K., Chaplot, S.L. 2018. Phonons and anomalous thermal expansion behaviour in crystalline solids, Progress in Materials Science, 92, 360–445. DOI: arXiv:1711.07267 CR - [7] Erkoç, Ş. 1997. Emprical many-body potential energy functions used in computer simulationof condensed matter properties, Physics Reports, 278, 79-105. DOI: https://doi.org/10.1016/S0370-1573(96)00031-2 CR - [8] Silayi, S., Papaconstantopoulos, D.A., Mehl M.J. 2018. A tight-binding molecular dynamics study of the noble metals Cu, Ag and Au, Computational Materials Science, 146, 278–286. CR - [9] Kazanc, S. 2004. Bakır Bazlı Alaşımlarda Termoelastik Dönüşümlerin Moleküler Dinamik Benzetimi, Fırat Üniversitesi, doktora Tezi, Elazığ CR - [10] Kazanc, S., Özgen, S. 2004. The Changes of barrier energy in fcc-bcc phase transformation by shear stresses, G.U. Journal of Science, 17(2), 35-42. CR - [11] Daw, M.S., Hatcher, R.D. 1985. Application of the embedded atom method to phonons in transition metals, Solid State Comm, 56, 697-699. DOI: https://doi.org/10.1016/0038-1098(85)90781-1 CR - [12] Voter, A.F., Chen, S.P. 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al, Mat. Res. Soc. Symp. Proc., 82, 175. DOI: https://doi.org/10.1557/PROC-82-175 CR - [13] Finnis, M.W. and Sinclair, J.E. 1984. A simple empirical N-body potential for transition metals Philosophical Magazine, 50, 45-55. DOI: https://doi.org/10.1080/01418618408244210 CR - [14] Ferrando, R., Tréglia, G. 1995. Tight binding molecular dynamics study of diffusion on Au and Ag(111), Surface Science, 331–333, 920-924. DOI:https://doi.org/10.1016/0039-6028(95)00276-6 CR - [15] Sutton, A.P., Chen, J. 1990. Long-range Finnis-Sinclair potentials, J. Philosophical Magazine Letter, 61,139-146.DOI: https://doi.org/10.1080/09500839008206493 CR - [16] Khoei,A.R., Abdolhosseini,M.J., Kazemi, M.T., Aghaei A. 2009. An investigation on the validity of Cauchy–Born hypothesis using Sutton-Chen many body potential Computational Materials Science, 44(3), 999-1006. DOI:10.1016/j.commatsci.2008.07.022 CR - [17] Xia, W., Chen, S., Sun, Y., Chen, Y. 2012. Geometrical structures of gold clusters on Gupta and Sutton-Chen potentials, Computational and Theoretical Chemistry, 1002, 43-48. DOI:10.1021/ja102145g CR - [18] Kazanc, S. 2006. Molecular dynamics study of pressure effect on glass formation and the crystallization in liquid CuNi alloy, Computational Materials Science, 38(2), 405-409. DOI: https://doi.org/10.1016/j.commatsci.2006.03.008 CR - [19] Nishiyama, Z. 1978. Martensitic transformation Academic press, New York. CR - [20] Suziki, T., Shimono, M., Kajiwara, S. 2001. On the mechanism for martensitic transformation from fcc to bcc, Mater. Sci. and Engin. A, 312, 104-108. DOI:https://doi.org/10.1016/S0921-5093(00)01862-1 CR - [21] Daw, M.S. and Baskes, M.I. 1983. Semiemprical, Quantum mechanical calculation of hydrogen embrittlement in metals, Physical Rewiev Letter, 50(17),1285-1288.DOI: doi.org/10.1103/PhysRevLett.50.1285 CR - [22] Cagin, T., Dereli, G., Uludogan, M. and Tomak, M. 1999. Thermal and mechanical properties of some fcc transition metals, Phys. Rev. B, 59(4), 3468-3472. DOI: doi.org/10.1103/PhysRevB.59.3468 CR - [23] Rose, J.H., Smith, J.R., Guinea, F. and Ferrante, J. 1984. Universal Features of the equation of state of metals, Physical Rewiev B, 29(6), 2963-2969. DOI:https://doi.org/10.1103/PhysRevB.29.2963 CR - [24] Kittel, C. 1986. Introduction to solid state physics, John Wiley&Sons, Inc., New York. UR - https://dergipark.org.tr/en/pub/deumffmd/issue//443040 L1 - https://dergipark.org.tr/en/download/article-file/624127 ER -