TY - JOUR T1 - A Sequence Bounded Above by the Lucas Numbers AU - Aydoğdu, Ali AU - Özkan, Engin AU - Göçer, Aykut PY - 2018 DA - December Y2 - 2018 DO - 10.16984/saufenbilder.443551 JF - Sakarya University Journal of Science JO - SAUJS PB - Sakarya University WT - DergiPark SN - 2147-835X SP - 1853 EP - 1856 VL - 22 IS - 6 LA - en AB - In this work, we consider the sequence whosenthterm isthe number of h-vectors of length n. The set of integer vectors E(n)isintroduced. For, n>=2,the cardinality ofE(n)is the nthLucasnumber Lnisshowed. The relation between the set of h-vectorsL(n)and theset of integer vectorsE(n)is given. KW - Cardinality KW - h-vectors KW - Hilbert function KW - Lucas Numbers CR - [1] W. Bruns and J. Herzog, “Cohen-Macaulay Rings, in: Cambridge Studies in Advanced Mathematics, vol 39,” Cambridge University Press, Cambridge, 1993. CR - [2] T. Enkosky and B. Stone, “Sequence defined by h-vectors,” Eprint arXiv:1308.4945. CR - [3] T. Enkosky, B. Stone, “A sequence defined by M-sequences,” Discrete Mathematics, vol. 333, pp. 35-38, 2014. CR - [4] E. Ozkan, A. Geçer and İ. Altun, “A new sequence realizing Lucas numbers and the Lucas Bound,” Electronic Journal of Mathematical Analysis and Applications, vol. 5, no. 1, 148-154, 2017. UR - https://doi.org/10.16984/saufenbilder.443551 L1 - https://dergipark.org.tr/en/download/article-file/547469 ER -