TY - JOUR T1 - On the Geometry of the Tangent Bundle With Vertical Rescaled Metric AU - Dida, Hamou Mohammed AU - Hathout, Fouzi AU - Azzouz, Abdelhalim PY - 2019 DA - February Y2 - 2017 DO - 10.31801/cfsuasmas.443735 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 222 EP - 235 VL - 68 IS - 1 LA - en AB - Let (M,g) be a n-dimensional smooth Riemannian manifold. In the present paper, we introduce a new class of natural metrics denoted by G^{f} and called the vertical rescaled metric on the tangent bundle TM. We calculate its Levi-Civita connection and Riemannian curvature tensor. We study the geometry of (TM,G^{f}) and several important results are obtained on curvature, Einstein structure, scalar and sectional curvatures KW - Tangent bundle KW - vertical rescaled metric KW - Einstein structure KW - curvature CR - Abbassi, M., T., K., Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold (M; g), Comment. Math. Univ. Carolin. 45(2004), 591-596. CR - Abbassi, M., T., K., Sarih, M., On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl. 22(2005), 19-47. CR - Abbassi, M., T., K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. 41(2005), 71-92. CR - Dida, M., H., Hathout, F., Djaa, M., On the Geometry of the Second Order Tangent Bundle with the Diagonal lift Metric, Int. Journal of Math. Analysis. 3(2009), 443-456. CR - Dombrowski, P., On the Geometry of the Tangent Bundle, J. Reine Angew Math. 210(1962), 73-88. CR - Cheeger, J., Gromoll, D., On the structure of complete manifolds of nonnegative curvature, Ann. of Math, 96(1972), 413-443. CR - García-Río, D., Kupeli, N., Semi-Riemannian Maps and Their Applications, Mathematics and Its Applications, Springer science media, B.V.8 2010. CR - Gezer, A., On the tangent bundle with deformed Sasaki metric, International Electronic Journal of Geometry, 6(2013), 19-31. CR - Gudmundsson, S., Kappos, E., On the Geometry of the Tangent Bundle with the Cheeger-Gromoll metric, Tokyo J. Math. 25(2002), 75-83. CR - Gudmundsson, S., Kappos, E., On the Geometry of the Tangent Bundles, Expo. Math. 20(2002), 1-41. CR - Hathout, F. Dida, H. M., Diagonal lift in the tangent bundle of order two and its applications, Turk. J. Math 30(2006), 373-384. CR - Kowalski, O., Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. Reine Angew.math. 250(1971), 124-129. CR - Musso, E., Tricerri, F., Riemannian metric on tangent bundle, Ann. Math. Pura. Appl. 150(1988), 1-19. CR - O'Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983. CR - Oproiu, V., Some new geometric structures on the tangent bundles. Publ Math. Debrecen, 55(1999) 261-281. CR - Oproiu, V., Papaghiuc, N., On the geometry of tangent bundle of a (pseudo-) Riemannian manifold, An Stiint Univ Al I Cuza Iasi Mat 44(1998) 67-83. CR - Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10(1958) 338-358. CR - Sekizawa, M., Curvatures of Tangent Bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14(1991) 407-417. CR - Wang, J., Wang, Y., On the geometry of tangent bundles with the rescaled metric, arXiv:1104.5584v1. CR - Yano, K., Ishihara, S., Tangent and cotangent bundles, Marcel Dekker, Inc., New York 1973. CR - Zayatuev, B. V., On geometry of tangent Hermitian surface, Webs and Quasigroups. T.S.U. (1995) 139-143. CR - Zayatuev, B. V., On some classes of almost-Hermitian structures on the tangent bundle, Webs and Quasigroups. T.S.U. (2002) 103--106. CR - Zhong, H. H., Lei, S., Geometry of tangent bundle with Cheeger--Gromoll type metric, Math. Anal. Appl. 402(2013) 493-504. UR - https://doi.org/10.31801/cfsuasmas.443735 L1 - https://dergipark.org.tr/en/download/article-file/506499 ER -