TY - JOUR T1 - Notes on Sophie Germain Primes AU - Akın, Canan AU - Baştan, Recep PY - 2018 DA - December JF - Turkish Journal of Mathematics and Computer Science JO - TJMCS PB - Matematikçiler Derneği WT - DergiPark SN - 2148-1830 SP - 18 EP - 21 VL - 10 LA - en AB - An elementary method for eliminating $2m$-prime pairs is given by Lampret [S. Lampret, Sieving $2m$-prime pairs, Notes on Number Theory and Discrete Mathematics Vol. 20, 2014, No.3, 54-46.], where m is an arbitrary positive integer. 2m-prime pairs are related the twin prime pairs since a $2m$-prime pair is a twin prime pair if $m=1$. Lampret gave a characterization for 6n-prime pairs of the form $(6k - 1, 6k + 6n - 1)$. In section 2, the Sophie Germain prime and connected safe prime pairs are referred to as $SG$-$S$-prime pairs in short. By using Lampret's results, we focus on a characterization to obtain SG-S-prime pairs owing to an eliminating method. Thus it is formed instructions for a sieve as an elementary method to find the $SG$-$S$-prime pairs. Moreover we give an example in which we use our instructions to obtain the SG-S-prime pairs up to $250$. Wilson's fundamental theorem in number theory gives a characterization of prime numbers via a congruence. A theorem based on Wilson's Theorem is formulated by Clement [P. A. Clement, Congruences to sets of primes, Am. Math. Mon. 56, 1949, 23-25]. Clement has a characterization of twin primes $(n,n+2)$. In section 3, by a congruence, we give a characterization of Sophie Germain primes in the light of the inspiration of Clement's theorem. KW - Prime number KW - Sophie Germain primes KW - Safe Primes CR - Alkalay-Houlihan C., Sophie Germain and Special Cases of Fermat’s Last Theorem. http://www.math.mcgill.ca/darmon/courses/12- 13/nt/projects/Colleen-Alkalay-Houlihan.pdf. Accessed: 2017-03-20. CR - Bishop, S. A., Okagbue, H. I., Adamu, M. O., Olajide, F. A., Sequences of numbers obtained by digit and iterative digit sums of Sophie Germain primes and its variants, Global Journal of Pure and Applied Mathematics, 12(2)(2016), 1473-1480. CR - Bucciarelli, L.L., Dworsky N., Sophie Germain: An essay in the history of the theory of elasticity, Vol. 6., Springer Science and Business Media, Netherland, 2012. CR - Caldwell, C.K., Prime Pages. The Top Twenty: Sophie Germain. http://primes.utm.edu/top20/page.php?id=2. CR - Clement, P. A., Congruences to sets of primes, Am. Math. Mon. 56 (1949), 23-25. CR - Daniloff, L.L., The Work of Sophie Germain and Niels Henrik Abel on Fermat’s Last Theorem. MS thesis. 2017. CR - Lampret, S., Sieving 2m-prime pairs, Notes on Number Theory and Discrete Mathematics 20 (2014), 54-46. CR - Liu, F., On the Sophie Germain prime conjecture, WSEAS Transactions in Math 10, 2 (2011), 421-430. CR - Meireles, M., On Sophie Germain primes. Proc. 13th WSEAS Int. Conf. App. Math. (2008), 370-373. CR - Ribenboim, P., 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, New York, 1979. CR - Ribenboim, P., Fermat’s Last Theorem for Amateurs, Springer-Verlag, New York, 1999. CR - Ribenboim, P., The Little Book of Bigger Primes, 2nd ed., Springer-Verlag, New York, 2004. UR - https://dergipark.org.tr/en/pub/tjmcs/issue//447243 L1 - https://dergipark.org.tr/en/download/article-file/607843 ER -