TY - JOUR T1 - Hermite-Hadamard Type Inequalities for Convex Stochastic Processes on n-coordinates AU - Karahan, Vildan AU - Okur, Nurgül AU - İşcan, İmdat PY - 2018 DA - December JF - Turkish Journal of Mathematics and Computer Science JO - TJMCS PB - Matematikçiler Derneği WT - DergiPark SN - 2148-1830 SP - 256 EP - 262 VL - 10 LA - en AB - The main subject of this study is initially to consider convex stochastic processes on n-dimensional interval. Besides, Hermite-Hadamard type inequalities are obtained for these processes. KW - Convexity KW - stochastic process on n-coordinates KW - mean-square integral KW - Hermite-Hadamard inequality CR - Ellahi, H., Farid, G. and Rehman, A. U., Inequality for s-convex function on n-coordinates, Proceedings of 1st ICAM Attock., Pakistan, 2015. CR - Kotrys, D., Hermite-Hadamard inequality for convex stochastic processes, Aequat. Math.,83(2012), 143-151. CR - Maden, S., Tomar, M. and Set, E., Hermite-Hadamard type inequalities for s-convex stochastic processes in the first sense, Pure and Applied Mathematics Letters.,1(2014), 1–7. CR - Nikodem, K., On convex stochastic processes, Aequat. Math.,20(1980), 184–197. CR - Okur,N.˙Is¸can,˙I.Usta,Y.,SomeIntegralinequalitiesforharmonicallyconvexstochasticprocessesonthecoordinates,AdvancedMath.Models & Applications.,3(2018), 63–75. CR - Set, E., Tomar, M. and Maden, S., Hermite-Hadamard type inequalities for s-convex stochastic processes in the second sense, Turkish Journal of Analysis and Number Theory.,2(2014), 202–207. CR - Shaked, M., Shanthikumar, J.G., Stochastic convexity and its applications, Advances in Applied Probability., 20 (1988), 427–446. CR - Skowronski, A., On some properties of J-convex stochastic processes, Aequat. Math.,44(1992), 249–258. UR - https://dergipark.org.tr/en/pub/tjmcs/issue//453657 L1 - https://dergipark.org.tr/en/download/article-file/615462 ER -