@article{article_453741, title={D-Conformal Curvature Tensor on (LCS)_{n}-Manifold}, journal={Turkish Journal of Mathematics and Computer Science}, volume={10}, pages={215–221}, year={2018}, author={Yıldırım, Ümit and Atçeken, Mehemt and Dirik, Süleyman}, keywords={(LCS)_{n}-Manifold,D-Conformal Curvature Tensor,Semi-Symmetric}, abstract={<div style="font-size:12.6px;"> <span style="font-size:12px;">This paper deals with the study of geometry of  </span> <span style="font-size:12px;">(LCS)_{n}-manifolds. We investigate some properties of </span> </div> <div style="font-size:12.6px;"> <span style="font-size:12px;">D-conformally flat and D-conformally semi-symmetric curvature  </span> <span style="font-size:12px;">conditions on (LCS)_{n}-manifold. </span> </div> <div style="font-size:12.6px;"> <span style="font-size:12px;">We classify  </span> <span style="font-size:12px;">(LCS)_{n}-manifolds, which satisfy the curvature conditions </span> </div> <div style="font-size:12.6px;"> <span style="font-size:12px;">B(\xi,Y)P=0 and B(\xi,Y)S=0, where B is the D-conformal  </span> <span style="font-size:12px;">curvature tensor and S is the Ricci tensor of manifold. </span> </div>}, publisher={Matematikçiler Derneği}