TY - JOUR T1 - Fotovoltaik İnce Film Olarak Elektrokimyasal Depozit Edilmiş Cu-Grafen ve Cu2O-Grafen Nanokompozitler TT - Electrochemically Deposited Cu-Graphene and Cu2O-Graphene Nanocomposites for Thin Film Photovoltaics AU - Doğan, Hülya Öztürk AU - Öznülüer, Tuba AU - Demir, Ümit PY - 2018 DA - September Y2 - 2018 DO - 10.21597/jist.458627 JF - Journal of the Institute of Science and Technology JO - J. Inst. Sci. and Tech. PB - Igdir University WT - DergiPark SN - 2536-4618 SP - 201 EP - 209 VL - 8 IS - 3 LA - tr AB - Bu çalışmada, Au ve indiyum kalay oksit (ITO) elektrotlarda bakır iyonlarının ve grafen oksitin sulusüspansiyonlarından eş zamanlı olarak indirgemesine dayanan Cu-grafen ve Cu2O-grafen nanoyapılarınınelektrokimyasal büyümesine yeni bir yaklaşım sunulmaktadır. Elde edilen kompozit nanoyapılar, taramalı elektronmikroskobu (SEM), enerji dağılımlı spektroskopi (EDS), X-ışını kırınımı (XRD), fotolüminesans spektroskopi(PL) ve foto-akım ölçümleri ile karakterize edildi. Deney sonuçları, Cu-grafen ve Cu2O-grafen kompozit filmyapılarının, uygulanan potansiyel ve deney ortamı ile kolayca kontrol edilebildiğini göstermektedir. SentezlenenCu-grafen ve Cu2O-grafen nanokompozit fotoelektrotlar; iyi fotovoltaik özellikler sergilerler ve güneş enerjisidönüşümündeki uygulamalar için kullanılabilirler. KW - Bakır oksit KW - Elektrokimyasal olarak indirgenmiş grafen oksit KW - grafen temelli nanokompozit KW - fotovoltaik elektrot N2 - In this study, we present a new approach to electrochemical growth of Cu-graphene and Cu2Ographenenanostructures that are based on simultaneous reduction of copper ions and graphene oxide from anaqueous suspension on Au and indium tin oxide (ITO) electrodes. The obtained composite nanostructures werecharacterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction(XRD), photoluminescence spectroscopy (PL), and photocurrent measurements. The experimental results showthat structures of Cu-graphene and Cu2O-graphene composite films can be easily controlled by application potentialand experimental media. The resulting Cu-graphene and Cu2O-graphene nanocomposites photoelectrodes exhibitsgood photovoltaic properties and could be used for applications in solar energy conversion. CR - An X, Li K, Tang J, 2014. Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem ., 7: 1086–1093. CR - Chen X, Mao SS, 2007. Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chem. Rev., 107: 2891–2959. CR - Chen M, Park C, Choi J, Oh W, 2011. Synthesis and characterization of metal (Pt, Pd and Fe)-graphene composites. J.Korean Ceramic Soc., 48 (2): 147-151. CR - Desimoni E, Brunetti B, 2015. X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review. Chemosensors, 3: 70-117. CR - Fujishima A, Honda K, 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238: 37–38. CR - Fujishima A, Zhang X, Tryk DA, 2008. TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63: 515–582. CR - Gao D, Zhang J, Zhu J, Qi J, Zhang Z, Sui W, Shi H, Xue D, 2010. Vacancy-mediated magnetism in pure copper oxide nanoparticles. Nanoscale Res Lett., 5: 769–772. CR - Gao L, Guest JR, Guisinger NP, 2010. Epitaxial graphene on Cu (111). Nano Lett., 10: 3512-3516. CR - Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS, 2006. New interpretations of XPS spectra of nickel metal and oxides. Surface Sci., 600, 1771-1779. CR - Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J N, Domen K, 1998. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun., 357-358. CR - Jongh PE, Vanmaekelbergh D, Kelly JJ, 2000. Photoelectrochemistry of electrodeposited Cu2O. J.Electrochem.Soc., 147(2): 486-489. CR - Ma J, Yuan T, He Y, Wang J, Zhang W, Yang D, Liao X, Ma Z, 2014. A novel graphene sheet-wrapped Co2(OH)3Cl composite as a long-life anode material for lithium ion batteries. J. Mater. Chem. A, 2:16925-16930. CR - Nakata K, Fujishima A, 2012. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochemistry Reviews, 13: 169–189. CR - Öztürk Doğan H, Ekinci D, Demir Ü, 2013. Atomic scale imaging and spectroscopic characterization of electrochemically reduced graphene oxide. Surface Science, 611: 54–59. CR - Pendashteh A, Mousavi MF, Rahmanifar MS, 2013. Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheers via an electrostatic coprecipitation and its application as supercapacitor. Electrochim.Acta, 88: 347-357. CR - Qian Y, Ye F, Xu J, Le Z, 2012. Synthesis of cuprous oxide (Cu2O) nanoparticles/graphene composite with an excellent electrocatalytic activity towards glucose. Int. J. Electrochem. Sci., 7: 10063 – 10073. CR - Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A, 2009. Graphene: The new two-dimensional nanomaterial. Angew. Chem., Int. Ed., 48: 7752-7777. CR - Sreeprasad TS, Samal AK, Pradeep T, 2009. Tellurium nanowire-induced room temperature conversion of graphite oxide to leaf-like graphenic structures. J.Phys.Chem C, 113 (5): 1727-1737. CR - Stankovich S, Dikin DA, Dommett GHB., Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, 2006. Graphene-based composite materials. Nature, 442: 282–286. CR - Sun Y, Wu Q, Shi G, 2011. Graphene based new energy materials. Energy Environ. Sci., 4: 1113-1132. CR - Tian J, Li H, Xing Z, Wang L, Luo Y, Asiri AM, Al-Youbi AO, Sun X, 2012. One-pot green hydrothermal synthesis of CuO–Cu2O–Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catal. Sci. Technol., 2: 2227–2230. CR - Wang Y, Wen Z, Zhang H, Cao G, Sun Q, Cao J, 2016. CuO Nanorods-Decorated Reduced Graphene Oxide Nanocatalysts for Catalytic Oxidation of CO. Catalysts, 6(12): 214-222. CR - Xie G, Forslund M, Pan J, 2014. Direct Electrochemical Synthesis of Reduced Graphene Oxide (rGO)/Copper Composite Films and Their Electrical/Electroactive Properties. Appl. Mater. Interfaces, 6 (10): 7444–7455. CR - Zhang F, Li Y, Gu Y, Wang Z, Wang C, 2011. One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta, 173: 103-109. UR - https://doi.org/10.21597/jist.458627 L1 - https://dergipark.org.tr/en/download/article-file/533187 ER -