TY - JOUR T1 - Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi TT - Synthesis of Cystein-Gold Nanoparticles as Nanocarriers of Disulfıram used in Alcohol Treament AU - Bayrakçeken Nişancı, Fatma PY - 2019 DA - March Y2 - 2018 DO - 10.21597/jist.467229 JF - Journal of the Institute of Science and Technology JO - J. Inst. Sci. and Tech. PB - Igdir University WT - DergiPark SN - 2536-4618 SP - 479 EP - 486 VL - 9 IS - 1 LA - tr AB - Disülfiram (DS), alkol caydırıcıolarak kullanılan bir karbamat türevidir. Tek başına uygulandığında nispetentoksik olmayan bir maddedir, ancak alkol ile birlikte metabolizmayı belirginbir şekilde değiştirmektedir. Disülfiram, aldehitdehidrojenazını inhibe ederek etki etmektedir. Disülfiram uygulandıktan sonraalkol alınırsa, kanda asetaldehit konsantrasyonu artar, ardından sistemikvazodilatasyon, solunum güçlüğü, bulantı, hipotansiyon ve diğer semptomlar(asetaldehit sendromu) izlenir. Disülfiramın daha hızlı bir şekilde etkigöstermesi altın nanopartiküller (Au NP) gibi nanotaşıyıcılarla mümkünolmaktadır. Altın nanopartiküller, kuantum noktalarla karşılaştırıldığında dahayüksek potansiyelli toksik olmayan biyomarkerlardır ve bu çalışma kapsamında,sisteinin (Cys) indirgeyici ve koruyucu ajan olarak Au NP ile sentezineodaklanılmıştır. Yaklaşık 5 nm çapında altınnanopartiküller, Cys ile modifiye edilen ve disülfiramın nanotaşıyıcısı olarakCys-Au NP’ler şeklinde konjugasyonu gerçekleştirilerek, (Altın nanopartiküllerinsentezi, taze Cys solüsyonlarına karıştırılarak karışım gece boyunca 37°C'debir su banyosu içinde karıştırılarak) özellikleri taramalı elektron mikroskobu(SEM), atomik kuvvet mıkroskobu (AFM) , geçirgen elektron mıkroskobu (TEM),FT-IR, raman ve UV-Vis spektroskopisi ile değerlendirildi. KW - Altın nanopartikül KW - Disülfiram KW - S-Au etkileşimi KW - Sistein N2 - Disulfiram (DS) is a carbamate derivative usedas an alcohol deterrent. It is a relatively non-toxic substance whenadministered alone, but it significantly changes metabolism with alcohol.Disulfiram acts by inhibiting aldehyde dehydrogenase. If alcohol is used afterdisulfiram is administered, the concentration of acetaldehyde increases,followed by systemic vasodilatation, respiratory distress, nausea, hypotension,and other symptoms (acetaldehyde syndrome). It is possible that disulfiram isacting more rapidly with nanostructures such as gold nanoparticles (Au NP).Gold nanoparticles are higher potency non-toxic biomarkers when compared toquantum dots, and in this study, cysteine ​​(Cys) is focused on synthesis withAu NP as a reducing and protective agent. Gold nanoparticles of about 5 nm indiameter were conjugated to cysteine ​​(Cys) and conjugated to Cys-Au NPs asnanostructures of disulfiram, (Synthesis of gold nanoparticles, mixing in freshCys solutions and mixing the mixture overnight at 37 ° C in a water bath) were characterizedby scanning electron microscopy (SEM), atomic force microscopy (AFM), permeableelectron microscopy (TEM), FT-IR, raman and UV-Visspectroscopy. CR - Aragay G, Pons J, Merkoci A, 2011. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chemical Reviews, 111: 3433-3458. CR - Aryal S, Remant B K C, Dharmaraj N, Bhattarai N, Kim C H, Kim H Y, 2006. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Spectrochimica Acta Part, 63: 160-163. CR - Bulatov A V, Petrova A V, Vishnikin A B, Moskvin L N, 2013. Stepwise injection spectrophotometric determination of cysteine in biologically active supplements and fodders. Microchemical Journal, 110: 369-373. CR - Dasary S S, Singh A K, Senapati D, Yu H, Ray P C, 2009. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. Journal of the American Chemical Society, 131: 13806–13812. CR - Di F R, Selloni A, Molinari E, 2002. DFT Study of cysteine adsorption on Au(111). Journal of Physical Chemistry B, 107: 1151−1156. CR - Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan, L, Zhang Y. A, 2012. Simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids and Surfaces A, 395: 161−167. CR - Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A, 2012. Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensor Actuat B-Chemical, 161: 880-885. CR - Hormozi-Nezhad M R, Seyedhosseini E, Robatjazi H, 2012. Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles. Sciare in Iran, 19: 958−963. CR - Jafarizad A, Aghanejad A, Sevim M, Metin Ö, Barar J, Omidi Y, Ekinci D, 2017. Gold Nanoparticles and Reduced Graphene Oxide-Gold Nanoparticle Composite Materials as Covalent Drug Delivery Systems for Breast Cancer Treatment. Chemistry Select, 2: 6663-6672. CR - Jongjinakool S, Palasak K, Bousod N, Teepoo S, 2014. Gold nanoparticles-based colorimetric sensor for cysteine detection. Energy Procedia, 56: 10 – 18. CR - Kang T F, Wang F, Lu LP, Zhang Y, Liu T S, 2010. Methyl parathion sensors based on gold nanoparticles nafion film modified glassy carbon electrodes. Sensor Actuat B-Chemical, 145: 104-109. CR - Pan Q, Zhang R, Bai Y, He N, Lu Z, 2008. An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement. Analytical Biochemistry, 375: 179-186. CR - Petean I, Tomoaıa G H, Horovıtz O, Mocanu A, Tomoaıa-Cotısel M, 2008. Cysteine mediated assembly of gold nanoparticles. Optoelectronics and Advanced Materıals, 10: 2289 – 2292. CR - Robert G A, Vitaliy F, Nataliya T, Elvio C, Kevin C, Prince J, 2014. Mechanisms of aggregation of cysteine functionalized gold nanoparticles. Journal of Physical Chemistry C, 118: 10481−10487. CR - Sasaki Y C, Yasuda K, Suzuki Y, Ishibashi T, Satoh I, Fujiki Y, Ishiwata S, 1997. Two-dimensional 5arrangement of a functional protein by cysteine-gold interaction: Enzyme activity and characterization of a protein monolayer on a gold substrate. Biophysical Journal, 72: 1842−1848. CR - Sharon E, Golub E, Niazov-Elkan A, Balogh D, Willner I, 2014. Analysis of telomerase by the telomeric Hemin/G-Quadruplex- controlled aggregation of Au nanoparticles in the presence of cysteine. Analytical Chemistry, 86: 3153−3158. CR - Singh R, Verm R, Kaushik A, Sumana G, Sood S, Gupta R K, Malhotra B D, 2011. Chitosan–iron oxide 5 nanocomposite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae 6 detection causing sexually transmitted disease. Biosens Bioelectron, 26: 2967-2974. CR - Su H, Ma Q, Shang K, Liu T, Yin H, Ai S, 2012. Gold nanoparticles as colorimetric sensor: A case study on E. Coli O157:H7 as a model for Gram-negative bacteria. Sensors and Actuators B: Chemical, 161: 298- 303. CR - Sudeep P K, Joseph S T S, Thomas K G, 2005. Selective detection of cysteine and glutathione using gold nanorods. Journal of the American Chemical Society, 127: 6516−6517. CR - Tengvall P, Lestelius M, Liedberg B, Lundstroem I, 1992. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir, 8: 1236−1238. CR - Thaxton C S, Georganopoulou D G, Mirkin C A, 2006. Gold nanoparticle probes for the detection of nucleic acid targets. Clinica Chimica Acta, 363: 120-126. CR - Vallee A, Humblot V, Pradier CM, 2010. Peptide interactions with metal and oxide surfaces. Accounts of Chemical Research, 43: 1297−1306. CR - Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M, 2013. Detection of pseudomonas syringae pathovars by thiol-linked DNA–gold nanoparticle probes. Sensor Actuat B-Chemical, 181: 644-651. UR - https://doi.org/10.21597/jist.467229 L1 - https://dergipark.org.tr/en/download/article-file/651614 ER -