TY - JOUR T1 - Gaussian (𝒔, 𝒕)-Pell and Pell-Lucas Sequences and Their Matrix Representations TT - Gauss (𝒔, 𝒕)-Pell ve Pell-Lucas Dizileri ve Matris Gösterimleri AU - Karaaslan, Nusret AU - Yağmur, Tülay PY - 2019 DA - March Y2 - 2019 DO - 10.17798/bitlisfen.470181 JF - Bitlis Eren Üniversitesi Fen Bilimleri Dergisi PB - Bitlis Eren University WT - DergiPark SN - 2147-3129 SP - 46 EP - 59 VL - 8 IS - 1 LA - en AB - In this study, we define the Gaussian (s,t)-Pell and Gaussian (s,t)-Pell-Lucas sequences. Then, by usingthese sequences we define Gaussian (s,t)-Pell and Gaussian (s,t)-Pell-Lucas matrix sequences. Thereafter,we give generating functions, Binet’s formulas and some summation formulas ofthese sequences. Finally, we obtain somerelationships between Gaussian (s,t)-Pell and Gaussian (s,t)-Pell-Lucas matrix sequences. KW - (s;t)-Pell sequence KW - Gaussian Pell sequence KW - (s;t)-Gaussian Pell sequence KW - (s;t)-Gaussian Pell matrix sequence N2 - Buçalışmada, Gauss (s,t)-Pellve Gauss(s,t)-Pell-Lucasdizilerini tanımladık. Sonra, bu dizileri kullanarak Gauss (s,t)-Pellve Gauss (s,t)-Pell-Lucasmatris dizilerini tanımladık. Daha sonra, bu dizilerin üreteç fonksiyonlarını,Binet formüllerini ve bazı toplam formüllerini verdik. Son olarak, Gauss (s,t)-Pell ve Gauss (s,t)-Pell-Lucas matris dizileri arasında bazı ilişkileri eldeettik. CR - Benjamin A.T., Plott S.S., Sellers J.A. 2008. Tiling Proofs of Recent Sum Identities Involving Pell Numbers, Annals of Combinatorics 12, 271-278. CR - Berzsenyi G. 1977. Gaussian Fibonacci Numbers. Fibonacci Quarterly 15(3): 233-236. CR - Civciv H., Türkmen R. 2008. Notes on the (s,t)-Lucas and Lucas Matrix Sequences, Ars Combinatoria 89, 271–285. CR - Civciv H., Türkmen R. 2008. On the (s,t)-Fibonacci and Fibonacci Matrix Sequences, Ars Combinatoria 87, 161–173. CR - Good J.J. 1981. Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio, Fibonacci Quaterly 31 (1): 7-20. CR - Gulec H.H., Taskara N. 2012. On the (s,t)Pell and (s,t)-Pell-Lucas Sequences and Their Matrix Representations, Applied Mathematics Letters 25(10): 1554-1559. CR - Halıcı S., Öz S. 2016. On Some Gaussian Pell and Pell-Lucas Numbers, Ordu Univ. Science and Technology Journal 6(1): 8-18. CR - Harman C.J. 1981. Complex Fibonacci Numbers, Fibonacci Quaterly 19(1): 82-86. CR - Horadam A.F. 1963. Complex Fibonacci Numbers and Fibonacci Quaternions, American Math. Monthly 70, 289-291. CR - Jordan J.H. 1965. Gaussian Fibonacci and Lucas Numbers, Fibonacci Quarterly 3, 315-318. CR - Koshy T. 2001. Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc., NY. CR - Pektaş P. 2015. (s,t)-Gauss Fibonacci ve Lucas Sayılarının Kombinatorial Özellikleri Üzerine. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek lisans tezi, 53s, Denizli. CR - Pethe S., Horadam A.F. 1986. Generalized Gaussian Fibonacci Numbers, Bull. Austral. Math. Soc. 33(1): 37-48. CR - Stakhov A., Rozin B. 2006. Theory of Binet Formulas for Fibonacci and Lucas p-numbers, Solitions & Fractals 27(5): 1162-1177. CR - Taskara N., Uslu K., Guleç H.H. 2010. On the Properties of Lucas Numbers With Binomial Coefficients, Applied Mathematics Letters 23(1): 68-72. CR - Yagmur T., Karaaslan N. 2018. Gaussian Modified Pell Sequence and Gaussian Modified Pell Polynomial Sequence, Aksaray J. Sci. Eng. 2(1): 63-72. UR - https://doi.org/10.17798/bitlisfen.470181 L1 - https://dergipark.org.tr/en/download/article-file/668455 ER -