TY - JOUR T1 - On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings AU - Sun, Yong AU - Wang, Zhi-gang AU - Rasila, Antti PY - 2019 DA - December DO - 10.15672/HJMS.2018.632 JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 1695 EP - 1705 VL - 48 IS - 6 LA - en AB - In this paper, we obtain the upper bounds to the third Hankel determinants for convex functions of order $\alpha$ and bounded turning functions of order $\alpha$. Furthermore, several relevant results on a new subclass of close-to-convex harmonic mappings are obtained. Connections of the results presented here to those that can be found in the literature are also discussed. KW - Univalent function KW - starlike function KW - convex function KW - bounded turning function KW - close-to-convex function KW - harmonic mapping KW - Hankel determinant CR - [1] Y. Abu Muhanna, L. Li, and S. Ponnusamy, Extremal problems on the class of convex functions of order -1/2, Arch. Math. (Basel) 103 (6), 461–471, 2014. CR - [2] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, in: Inequal. Theory and Appl. 6, 1–7, editors: Y. J. Cho, J.K. Kim and S.S. Dragomir, 2010. CR - [3] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (1), 103–107, 2013. CR - [4] D. Bansal, S. Haharana, and J.K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc. 52, 1139–1148, 2015. CR - [5] S.V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univelent mappings and hypergeometric mappings, Rocky Mt. J. Math. 44, 753–777, 2014. CR - [6] D. Bshouty, S.S. Joshi, and S.B. Joshi, On close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 58, 1195–1199, 2013. CR - [7] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings, Complex Appl. Oper. Theory 5, 767–774, 2011. CR - [8] D.G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69, 362– 366, 1963. CR - [9] J. Chen, A. Rasila, and X. Wang, Coefficient estimates and radii problems for certain classes of polyharmonic mappings, Complex Var. Elliptic Equ. 60, 354–371, 2015. CR - [10] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math. 9, 3–25, 1984. CR - [11] P. Dienes, The Taylor Series, Dover, New York, 1957. CR - [12] P.L. Duren, Univalent functions, Springer Verlag, New York Inc., 1983. CR - [13] P.L. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004. CR - [14] A. Edrei, Sur les déterminants récurrents et les singularités d’une fonction donnée par son développement de Taylor, Compos. Math. 7, 20–88, 1940. CR - [15] M. Fekete and G. Szegő, Eine bemerkung über ungerade schlichte functions, J. London Math. Soc. 8, 85–89, 1933. CR - [16] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal. 4 (52), 2573–2585, 2010. CR - [17] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc. 18 (3), 77–94, 1968. CR - [18] A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2), Art. 50, 5 pp, 2006. CR - [19] A. Janteng, S.A. Halim, and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1 (13), 619–625, 2007. CR - [20] D. Kalaj, S. Ponnusamy, and M. Vuorinen, Radius of close-to-convexity and fully starlikeness of harmonic mappings, Complex Var. Elliptic Equ. 59, 539–552, 2014. CR - [21] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101, 89–95, 1987. CR - [22] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math. 49, 420–433, 1987. CR - [23] S.K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013, Art. 281, 17 pp, 2013. CR - [24] R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85, 225–230, 1982. CR - [25] R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Am. Math. Soc. 87, 251–257, 1983. CR - [26] A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Am. Math. Soc. 21, 545–552, 1969. CR - [27] P.T. Mocanu, Sufficient conditions of univalence for complex functions in the class C1, Rev. Anal. Numér. Théor. Approx. 10, 75–79, 1981. CR - [28] P.T. Mocanu, Injectivity conditions in the complex plane, Complex Appl. Oper. Theory 5, 759–766, 2011. CR - [29] S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 59, 204–216, 2014. CR - [30] H. Orhan and P. Zaprawa, Third Hankel determinants for starlike and convex functions, Bull. Korean Math. Soc. 55, 165–173, 2018. CR - [31] C. Pommerenke, On the coefficients and Hankel determinant of univalent functions, J. Lond. Math. Soc. 41, 111–122, 1966. CR - [32] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14, 108–112, 1967. CR - [33] S. Ponnusamy and A. Rasila, Planar harmonic and quasiregular mappings, in: Topics in modern function theory, Ramanujan Math. Soc. Lect. Notes Ser. 19, 267–333, Ramanujan Math. Soc., Mysore, 2013. CR - [34] S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, Comput. Methods Funct. Theory 12, 669–685, 2012. CR - [35] S. Ponnusamy and A. Sairam Kaliraj, Constants and characterization for certain classes of univalent harmonic mappings, Mediterr. J. Math. 12, 647–665, 2015. CR - [36] M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013, Art. 412, 8 pp., 2013. CR - [37] T.J. Suffridge, Some special classes of conformal mappings, in: Handbook of complex analysis: geometric function theory (Edited by Kühnau), 2, 309–338, Elsevier, Amsterdam, 2005. CR - [38] Y. Sun, Y. Jiang, and A. Rasila, On a subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 61, 1627–1643, 2016. CR - [39] D. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy, Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc. 34, 121–127, 2015. CR - [40] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math. 14 (1), Art. 19, 10 pp., 2017. UR - https://doi.org/10.15672/HJMS.2018.632 L1 - https://dergipark.org.tr/en/download/article-file/568278 ER -