TY - JOUR T1 - A note on some recent results of the conformable fractional derivative AU - Birgani, O. Taghipour AU - Dedovic, Nebojsa AU - Chandok, Sumit AU - Radenovic, Stojan PY - 2019 DA - March DO - 10.31197/atnaa.482525 JF - Advances in the Theory of Nonlinear Analysis and its Application JO - ATNAA PB - Erdal KARAPINAR WT - DergiPark SN - 2587-2648 SP - 11 EP - 17 VL - 3 IS - 1 LA - en AB - In this note, we discuss, improve and complement some recent results of theconformable fractional derivative introduced and established by Katugampola[arxiv:1410.6535v1] and Khalil et al. [J. Comput. Appl. Math. 264(2014)65-70]. Among other things we show that each function $f$ defined on $(a,b)$, $a>0$ has a conformable fractional derivative (CFD) if and only if it hasa classical first derivative. At the end of the paper, we prove the Rolle's,Cauchy, Lagrange's and Darboux's theorem in the context of ConformableFractional Derivatives. KW - Conformable fractional derivative; fractional derivative; fractional integral; Riemann-Liouvelle definition; Caputo definition; fractional differential equations CR - \bibitem{AC} F. B. Adda and J. Cresson, \emph{Fractional differentialequations and the Schr\"{o}dinger equation,} App. Math. Comput.\textbf{161}(2005) 323-345 CR - \bibitem{AMA} B. Ahmad, M. M. Matar and R. P. Agarwal, \emph{Existenceresults for fractional differential equations of arbitrary order withnonlocal integral boundary conditions,} Boundary Value Problem (2015)2015:220 CR - \bibitem{Alm} R. Almeida, \emph{What is the best fractional derivative tofit data?} to appear CR - \bibitem{TAb} T. Abdeljawad, \emph{On conformable fractional calculus,} J.Comput. Appl. Math. \textbf{729} (2015) 57-66. CR - \bibitem{AiZ} J. Alzabut, T. Abdeljawad, \emph{A generalized discretefractional Gronwall inequality and its application on the uniqueness ofsolutions for nonlinear delayed fractional difference system}, to appear CR - \bibitem{BKMG} L. B. Budhia, P. Kumam, J. M. Moreno and D. Gopal, \emph{%Extensions of almost-F and F-Suzuki contractions with graph and someapplications to fractional calculus,} Fixed Point Theory Appl. (2016) 2016:2 CR - \bibitem{Die} K. Diethelm and Neville J. Ford, \emph{Analysis of FractionalDifferential Equations,} J. Math. Anal. Appl. Volume 265, Issue 2, 15January 2002, Pages 229-248 CR - \bibitem{KaT} U. N. Katugampola, \emph{A new fractional derivative withclassical properties}, arXiv:1410.6535v1 [math.CA] 24Oct2014 CR - \bibitem{KHYS} R. Khalil, A. Al Horani, A. Yousef, M. Sabadheh, \emph{A newdefinition of fractional derivative,} J. Comput. Appl. Math. 264 (2014) 65-70 CR - \bibitem{KiL} A. Kilbas, H. Srivistava, J. Trujillo, \emph{Theory andApplications of Fractional Differential Equations, in: Math. Studies.,}North-Holand, New York, 2006 CR - \bibitem{LV} V. Lakshmikantham, A. S. Vatsala, \emph{Basic theory offractional differential equations,} Nonlinear Anal. \textbf{69} (2008)2677-2682 CR - \bibitem{LGS} H. Lakzian, D. Gopal and W. Sintunavarat, \emph{New fixedpoint results for mappings of contractive type with an application tononlinear fractional differential equations,} J. Fixed Point Theory Appl.DOI 10.1007/s11784-015-0275-7 CR - \bibitem{LoV} A. Loverro, \emph{Fractioanal Calculus: History, Definitionsand Applications for the Engineer, }Department of Aerospace and MechanicalEngineering, University of Notre Dame, Notre Dame, IN 46556, U.S.A CR - \bibitem{Mi} K. S. Miler, \emph{An Introduction to Fractional Calculus andFractional Differential Equations,} J. Wiley and Sons, New Yorkl, 1993 CR - \bibitem{OlD} K. Oldham, J. Spanier, \emph{The Fractional Calculus, Theoryand Applications of Differentiation and Integration of Arbitrary Order,}Academic Press, USA, 1974 CR - \bibitem{OM} E. C. de Oliveira and J. A. T. Machado, \emph{A review ofdefinitions for fractional derivatives and integral,} Mathematical Problemsin Engineering, Volume 2014, Article ID 238459, 6 pages CR - \bibitem{OTM} M. D. Ortigueira, J. A. T. Machado, \emph{What is afractional derivative?} Journal of Computational Physics \textbf{293} (2015)4-13 CR - \bibitem{Po} I. Podlubny, \emph{Fractional Differential Equations,}Academic Press, USA, 1999 CR - \bibitem{MR} M. Rahimy, \emph{Applications of Fractional DifferentialEquations}, Applied Mathematical Science, Vol. \textbf{4}, 2010, no. 50,2453-2461 CR - \bibitem{Su} C.M. Su, J. P. Sun, Y. H. Zhao, \emph{Existence and uniquenessof solutions for BVP of nonlinear fractional differential equation}, toappear CR - \bibitem{Zh} S. Zhang, \emph{The existence of a positive solution for anonlinear fractional differential equation,} Journal of Math. Anal. Appl.\textbf{252}, 804-812 (2000). UR - https://doi.org/10.31197/atnaa.482525 L1 - https://dergipark.org.tr/en/download/article-file/612536 ER -