TY - JOUR T1 - Cobalt+Salt-Stressed Salvia officinalis: ROS Scavenging Capacity and Antioxidant Potency TT - Cobalt+Salt-Stressed Salvia officinalis: ROS Scavenging Capacity and Antioxidant Potency AU - Torun, Hülya PY - 2019 DA - March DO - 10.21448/ijsm.484954 JF - International Journal of Secondary Metabolite JO - Int. J. Sec. Metabolite PB - İzzet KARA WT - DergiPark SN - 2148-6905 SP - 49 EP - 61 VL - 6 IS - 1 LA - en AB - Salvia officinalis L. (Lamiaceae) is oneof the most widespread herbal species used in the food processing industry andfor culinary and medicinal purposes. This work aimed to investigate changes inplant growth, water content, lipid peroxidation, H2O2,proline, and enzymes related to reactive oxygen species (ROS) detoxificationincluding superoxide dismutase (SOD), peroxidase (POX), catalase (CAT),ascorbate peroxidase (APX) and glutathione reductase (GR). Phenolic contentsand antioxidant capacity values such as ferric ion reducing antioxidant power(FRAP), cupric ion reducing antioxidant capacity (CUPRAC) and2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging were studied understress conditions of salt, cobalt and a combination of the two. No significantdifferences were found in relative water content and chlorophyll fluorescenceunder salt, cobalt and their combination. However, the osmotic potential andrelative growth rate were enhanced with salt+cobalt compared to salt-treatedplants. Salt and cobalt individually stimulated high antioxidant activity. HighAPX and GR activities were associated with the high proline accumulation in thesage plants under the combined effect of salt+cobalt. The combination decreasedlipid peroxidation (TBARS), while H2O2 content was increased.This increase with the combined salt+cobalt effect may be associated with thedecrease in CAT activity. Moreover, a strong correlation was found between TPCand TF content and antioxidant capacity measured via FRAP, CUPRAC and DPPH. TheTPC, TF and antioxidant capacity values also increased under the salt+cobaltcombination, suggesting an increase in antioxidant content in the sage leaves.Therefore, the combination of salt and cobalt improved the stress tolerance of S. officinalis. KW - Antioxidant enzyme KW - cobalt KW - combined stress KW - salt KW - Salvia officinalis N2 - Salvia officinalis L. (Lamiaceae) is one of the most widespread herbal species used in the food processing industry and for culinary and medicinal purposes. This work aimed to investigate changes in plant growth, water content, lipid peroxidation, H2O2, proline, and enzymes related to reactive oxygen species (ROS) detoxification including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR). Phenolic contents and antioxidant capacity values such as ferric ion reducing antioxidant power (FRAP), cupric ion reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging were studied under stress conditions of salt, cobalt and a combination of the two. No significant differences were found in relative water content and chlorophyll fluorescence under salt, cobalt and their combination. However, the osmotic potential and relative growth rate were enhanced with salt+cobalt compared to salt-treated plants. Salt and cobalt individually stimulated high antioxidant activity. High APX and GR activities were associated with the high proline accumulation in the sage plants under the combined effect of salt+cobalt. The combination decreased lipid peroxidation (TBARS), while H2O2 content was increased. This increase with the combined salt+cobalt effect may be associated with the decrease in CAT activity. Moreover, a strong correlation was found between TPC and TF content and antioxidant capacity measured via FRAP, CUPRAC and DPPH. The TPC, TF and antioxidant capacity values also increased under the salt+cobalt combination, suggesting an increase in antioxidant content in the sage leaves. Therefore, the combination of salt and cobalt improved the stress tolerance of S. officinalis. CR - [1] Lopresti, A.L. (2017). Salvia (sage): a review of its potential cognitive-enhancing and protective effects. Drugs in R&D, 17(1), 53-64. doi: 10.1007/s40268-016-0157-5 CR - [2] Jantová, S., Hudec, R., Sekretár, S., Kučerák, J., Melušová, M. (2014). Salvia officinalis L. extract and its new food antioxidant formulations induce apoptosis through mitochondrial/caspase pathway in leukemia L1210 cells. Interdisciplinary Toxicology, 7(3), 146–153. doi: 10.2478/intox-2014-0020 CR - [3] Noctor, G., Paepe, R.D. Foyer, C.H. (2007). Mitochondrial redox biology and homeostasis in plants. Trends in Plant Science, 12, 125-134. doi: 10.1016/j.tplants.2007.01.005 CR - [4] Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Rodermel, S., Inze, D., Mittler, R. (2002). Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase and catalase. Plant Jornal, 32, 329-342. doi: 10.1046/j.1365-313X.2002.01427.x CR - [5] Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). The reactive oxygen gene network in plants. Trends in Plant Science, 9, 490–498. doi: 10.1016/j.tplants.2004.08.009 CR - [6] Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016 CR - [7] Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19. doi: 10.1016/j.tplants.2005.11.002 CR - [8] Zandalinas, S.I., Mittler, R., Balfagón, D., Arbona, V., Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162, 2–12. doi: 10.1111/ppl.12540 CR - [9] Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review, Ecotoxicology and Environmental Safety, 60, 324-349. doi: 10.1016/j.ecoenv.2004.06.010 CR - [10] Jayakumara, K., Vijayarengan, P., Changxing, Z., Gomathinayagam, M., Jaleel, C.A. (2008). Soil applied cobalt alters the nodulation, leg-haemoglobin content and antioxidant status of Glycine max (L.) Merr. Colloids and Surfaces B: Biointerfaces, 67(2), 272-275. doi: 10.1016/j.colsurfb.2008.08.012 CR - [11] Gopal, R., Dube, B.K., Sinha, P., Chatterjee, C. (2003). Cobalt toxicity effects on growth and metabolism of tomato. Communications in Soil Science and Plant Analysis, 34, 5-6, 619-628, doi: 10.1081/CSS-120018963 CR - [12] Gad, N. (2005). Interactive effect of cobalt and salinity on tomato plants I- growth and mineral composition as affected by cobalt and salinity. Research Journal of Agriculture and Biological Sciences, 1(3): 261-269. CR - [13] Gad, N., Kandil, H. (2011). Maximizing the tolerance of wheat plants to soil salinity using cobalt I- growth and mineral composition. Journal of Applied Sciences Research, 7(11), 1569-1574. CR - [14] Gad, N., Abd El-Moez, M.R., Kandil, H. (2011). Barley response to salt stress at varied levels of cobalt ıı. some physiological and chemical characteristics. Journal of Applied Sciences Research, 7(11), 1447-1453. CR - [15] Gad, N., El–Metwally, I.M. (2015). Chemical and physiological response of maize to salinity using cobalt supplement. International Journal of ChemTech Research, 8(10), 45-52. CR - [16] Hunt, R., Causton, D.R., Shipley, B., Askew, A.P. (2002). A modern tool for classical plant growth analysis, Annals of Botany, 90, 485–488. doi: 10.1093/aob/mcf214 CR - [17] Heath, R. L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125, 189-198. doi: 10.1016/0003-9861(68)90654-1 CR - [18] Liu, J., Lu, B., Xun, A.L. (2000). An improved method for the determination of hydrogen peroxide in leaves. Progress in Biochemistry and Biophysics, 27, 548–551. doi: 10.1111/j.1365-2621.1977.tb01540.x CR - [19] Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205–207. doi: 10.1007/BF00018060 CR - [20] Bradford, M.M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochemistry, 72, 248–254. doi: 10.1016/0003-2697(76)90527-3 CR - [21] Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287. doi: 10.1016/0003-2697(71)90370-8 CR - [22] Mika, A., Lüthje, S. (2003). Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132, 1489–1498. doi: 10.1104/pp.103.020396 CR - [23] Aebi, H. Catalase in vitro, in S.P. Colowick, N.O. Kaplan (Eds.), Methods in Enzymology, Academic Press, Orlando, 1984, pp. 114–121. CR - [24] Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880. doi: 10.1093/oxfordjournals.pcp.a076232 CR - [25] Foyer, C.H., Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21–25. doi: 10.1007/BF00386001 CR - [26] Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics withphosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158. CR - [27] Huang, D.-J., Chun-Der, L., Hsien-Jung, C., Yaw-Huei, L. (2004). Antioxidant and antiproliferative activities of sweet potato (Ipomoea batatas [L.] LamTainong 57') constituents. Botanical Bulletin- Academia Sinica Taipei, 45, 179–186. CR - [28] Benzie, I.F., Strain, J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. doi: 10.1016/S0076-6879(99)99005-5 CR - [29] Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E. (2004). A novel total antioxidant capacity index for dietary polyphenols, vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970–7981. doi: 10.1021/jf048741x CR - [30] Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181 (4617), 1199–1200. doi: 10.1038/1811199a0 CR - [31] Ma, X., Zheng, J., Zhang, X., Hu, Q., Qian, R. (2017). Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Frontiers in Plant Science, 8(600), 1–13. doi: 10.3389/fpls.2017.00600 CR - [32] Karuppanapandian, T., Kim, W. (2013). Cobalt-induced oxidative stress causes growth inhibition associated with enhanced lipid peroxidation and activates antioxidant responses in Indian mustard (Brassica juncea L.) leaves. Acta Physiologia Plantarum, 35, 2429-2443. doi: 10.1007/s11738-013-1277-y CR - [33] Vanselow, A.P. Cobalt, in: H.D. Chapman, (Ed.), Diagnostic Criteria of Plants, Quality Printing Company, Abilene, TX, 1965, pp. 142–156. CR - [34] Lwalaba, J.L., Zvobgo, G., Fu, L., Zhang, X., Mwamba, T.M., Muhammad, N., Mundende, R.P., Zhang, G. (2017). Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance. Ecotoxicology and Environmental Safety, 139, 488-495. doi: 10.1016/j.ecoenv.2017.02.019 CR - [35] Khalid, A.K., Shedeed, M.R. (2014). The effects of saline irrigation water and cobalt on growth and chemical composition in Nigella sativa. Nusantara Bioscience, 6(2), 146-151. doi: 10.13057/nusbiosci/n060207 CR - [36] Gengmao, Z., Quanmei, S., Yu, H., Shihui, L., Changhai, W. (2014). The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PloS ONE, 9(2), e89624. doi: 10.1371/journal.pone.0089624 CR - [37] Ksouri, R., Megdiche, V., Debez, A., Falleh, H., Grignon, C., Abdelly, C. (2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiology and Biochemistry, 45, 244 - 249. doi: 10.1016/j.plaphy.2007.02.001 CR - [38] Cuvelier, M.-E., Berset, C., Richard, H. (1994). Antioxidant constituents in sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 42, 665-669. doi: 10.1021/jf00039a012 CR - [39] Taârit, M.B., Msaada, K., Hosni, K., Marzouk, B. (2012). Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. Journal of the Science of Food and Agriculture, 92(8), 1614-1619. doi: 10.1002/jsfa.4746 CR - [40] Duletić-Laušević, S., Alimpić, A., Pavlović, D., Marin, P.D., Lakušić, D. (2016). Salvia officinalis of different origins Antioxidant activity, phenolic and flavonoid content of extracts. Agro Food Industry Hi Tech, 27(1), 52-55. CR - [41] Bayan, Y., Genç, N. (2016). Determination of antioxidant capacity and total phenolic matter of Salvia verticillata subsp. amasiaca. Nevşehir Bilim ve Teknoloji Dergisi, 5(2), 158-166. doi: 10.17100/nevbiltek.284739 CR - [42] Taârit, M.B., Msaada, K., Hosni, K., Marzouk, B. (2012). Fatty acids, phenolic changes and antioxidant activity of clary sage (Salvia sclarea L.) rosette leaves grown under saline conditions. Industrial Crops and Products, 38, 58– 63. doi:10.1016/j.indcrop.2012.01.002 CR - [43] Valifard, M., Mohsenzadeh, S., Kholdebarin, B., Rowshan, V. (2014). Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. South African Journal of Botany, 93, 92 - 97. doi.org/10.1016/j.sajb.2014.04.002 CR - [44] Başgel, S. Erdemoğlu, S.B. (2005). Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Science of the Total Environment, 359, 82–89. CR - [45] Kiliçel, F., Karapinar, H.S., Uğuz, A. (2017). Determination of some heavy metal concentrations of sage tea with FAAS. International Journal of Secondary Metabolite, 4(3), 391-399. doi: 10.21448/ijsm.374637 UR - https://doi.org/10.21448/ijsm.484954 L1 - https://dergipark.org.tr/en/download/article-file/642561 ER -