TY - JOUR T1 - Parafree metabelian Lie algebras which are determined by parafree Lie algebras AU - Velioğlu, Zehra PY - 2019 DA - February Y2 - 2018 DO - 10.31801/cfsuasmas.485878 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 883 EP - 888 VL - 68 IS - 1 LA - en AB - Let L be a Lie algebra. Denote by δ^{k}(L) the k-th term of the derived series of L and by Δ_{w}(L) the intersection of the ideals I of L such that L/I is nilpotent. We prove that if P is a parafree Lie algebra, then the algebra Q=(P/δ^{k}(P))/Δ_{w}(P/δ^{k}(P)), k≥2 is a parafree solvable Lie algebra. Moreover we show that if Q is not free metabelian, then P is not free solvable for k=2. KW - Parafree Lie algebras KW - metabelian Lie algebras KW - solvable Lie algebras CR - Baumslag, G., Groups with the same lower central sequence as a relatively free group I. The groups, Trans. Amer. Math. Soc., 129(1967), 308-321. CR - Baumslag, G., Groups with the same lower central sequence as a relatively free group. II Properties, Trans. Amer. Math. Soc., 142(1969), 507-538. CR - Baumslag, G., Parafree groups, Progress in Math., 248(2005), 1-14. CR - Baumslag, G., and Cleary, S., Parafree one-relator groups, J. Group Theory, 9(2006), 191-201. CR - Baumslag, G., and Cleary, S. And Havas, G., Experimenting with infinite group, Experimental Math., 13(2004), 495-502. CR - Baur, H., Parafreie Liealgebren und homologie, Diss. Eth Nr. 6126, (1978), 60 pp. CR - Baur, H., A note on parafree Lie algebras, Commun. in Alg., 8(1980), No.10 953-960. CR - Ekici, N. and Velioğlu, Z., Unions of Parafree Lie Algebras, Algebra, 2014(2014), Article ID 385397. CR - Ekici, N. and Velioğlu, Z., Direct Limit of Parafree Lie Algebras, Journal of Lie Theory 25(2015), No. 2 477-484. UR - https://doi.org/10.31801/cfsuasmas.485878 L1 - https://dergipark.org.tr/en/download/article-file/578275 ER -