TY - JOUR T1 - İki Eksenli Esnek bir Manipülatörün ANSYS APDL ile Modellenmesi ve Titreşim Kontrolü TT - Modeling and Vibration Control of a Two-Link Flexible Manipulator with ANSYS APDL AU - Yavuz, Şahin PY - 2018 DA - September JF - Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi JO - DEUFMD PB - Dokuz Eylul University WT - DergiPark SN - 1302-9304 SP - 817 EP - 829 VL - 20 IS - 60 LA - tr AB - Bu çalışmada, iki eksenli esnek bir manipülatörün hareket sonrası artıktitreşimlerinin kontrolü incelenmiştir. Manipülatör ANSYS'de APDL (AnsysParametrik Tasarım Dili) kullanılarak modellenmiştir. Hareket sonrası titreşimsinyalleri, sonlu elemanlar teorisine dayalı olarak ANSYS'de gerçekleştirilendinamik analiz ile simüle edilir. Önceki çalışmada elde edilen deney sonuçlarıda sunulmuş ve benzetim sonuçları ile karşılaştırılmıştır. Tahrik motorlarıiçin trapez hız profilleri kullanılmıştır. Trapez hız profilinin ivme, sabithız ve yavaşlama süreleri, durdurma pozisyonundaki manipülatör yapısının endüşük doğal frekansı dikkate alınarak seçilir. Çeşitli başlangıç ve durmapozisyonları değerlendirilmiştir. Hareket bittikten sonra meydana gelen artıktitreşim sinyallerinin karelerinin ortalamasının karekök (RMS) değerlerihesaplanır. Artık titreşimin yavaşlama süresine duyarlı olduğu gözlemlenmiştir.RMS değerleri, yavaşlama süresinin tersi ilk doğal frekansa eşitse, en düşükdeğer elde edilmektedir. Yavaşlama zamanının tersi ilk doğal frekansın yarısınaeşitse, en yüksek değer elde edilir. Benzetim ve deney sonuçlarının birbirleriyleuyumlu çıktığı görülmektedir. KW - Manipülatör KW - Titreşim Kontrolü KW - ANSYS APDL N2 - In this study, the control of post-motion residual vibrations of atwo-link flexible manipulator is investigated. The manipulator is modeled inANSYS by using APDL (Ansys Parametric Design Language). The post-motionvibration signals are simulated by transient analysis which is performed inANSYS based on the finite element theory. Experimental results are alsopresented and compared with simulation results. Trapezoidal velocity profilesare used for the motors. The acceleration, constant velocity and decelerationtime intervals of the trapezoidal velocity profile are determined byconsidering the lowest natural frequency of the manipulator structure at thestopping position. Various starting and stopping positions are considered. Theroot mean square (RMS) acceleration values of the vibration signals afterstopping are calculated. It is observed that the residual vibration issensitive to the deceleration time. TheRMS values are lowest if the inverse of the deceleration time is equal to thefirst natural frequency. It is highestif the inverse of the deceleration time is equal to the half of the firstnatural frequency. It is observed that simulation and experimental results arein good agreement. CR - [1] Benosman M., LeVey G. 2004. Control of flexible manipulators: A survey. Robotica, Cilt. 22, s. 533-545. CR - [2] Fung T.C. 1997. Unconditionally stable higher-order Newmark methods by sub-stepping procedure. Computer Methods in Applied Mechanics and Engineering, Cilt. 147, s. 61-84. CR - [3] Owren B., Simonsen H.H. 1995. Alternative integration methods for problems in structural dynamics. Computer Methods in Applied Mechanics and Engineering, Cilt. 122, s. 1-10. CR - [4] Zhang L., Zhu J.W., Zheng Z. 1999. The stochastic Newmark algorithm for random analysis of multi-degree-of-freedom nonlinear systems. Computers and Structures, Cilt. 70, s. 557-568. CR - [5] Karagülle H., Malgaca L., Öktem H.F. 2004. Analysis by active vibration control in smart structures by ANSYS, Smart Materials and Structures, Cilt. 13, s. 661–667. CR - [6] Dwivedy S.K., Eberhard P. 2006. Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory, Cilt. 41, s. 749–777. CR - [7] Shin H.C., Choi S.B. 2001. Position control of a two link flexible manipulator featuring piezoelectric actuators and sensors. Mechatronics, Cilt. 11, s. 707-729. CR - [8] Gurses K., Bradley J.B., Edward J.P. 2009. Vibration control of a single-link flexible manipulator using an array of fiber optic curvature sensors and PZT actuators. Mechatronics Cilt. 19, s. 167–177. CR - [9] Mirzaee E., Eghtesad M., Fazelzadeh S.A. 2010. Maneuver control and active vibration suppression of a two-link flexible arm using a hybrid variable structure/Lyapunov control design. Acta Astronautica, Cilt. 67, s. 1218–1232. CR - [10] Zhang Q., Li J., Zhang J., Zhang J. 2017. Smooth adaptive sliding mode vibration control of a flexible parallel manipulator with multiple smart linkages in modal space. Journal of Sound and Vibration. Cilt. 411, s. 1-19. CR - [11] Pedro J.O., Smith R.V. 2017. Real-Time Hybrid PID/ILC Control of Two-Link Flexible Manipulators. IFAC-PapersOnline. Cilt. 50, s. 145-150. CR - [12] Park K.J. 2004. Flexible robot manipulator path design to reduce the endpoint residual vibration under torque constraints. Journal of Sound and Vibration, Cilt. 275, s. 1051–1068. CR - [13] Abe A. 2009. Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation. Mechanism and Machine Theory, Cilt. 44, s. 1627–1639. CR - [14] Green A., Sasiadek J.Z. 2004. Dynamics and Trajectory Tracking Control of a Two-Link Robot Manipulator. Journal of Vibration and Control, Cilt. 10, s. 1415–1440. CR - [15] Singer N.C., Seering W.P. 1990. Preshaping command inputs to reduce system vibration. Journal of Dynamic Systems, Measurement and Control, Cilt. 112, s. 76-82. CR - [16] Singhose W. 2009. Command shaping for flexible systems: a review of the first 50 years. International Journal of Precision Engineering and Manufacturing, Cilt. 10, s. 153-168. CR - [17] Ouyang Y., He W., Li X. 2017. Reinforcement learning control of a single- link flexible robotic manipulator. IET Control Theory. Cilt. 11(9), s. 1426-1433. CR - [18] Ankarali A., Diken H. 1997. Vibration Control Of An Elastic Manipulator Link. Journal of Sound and Vibration, Cilt. 204, s. 162-170. CR - [19] Mimmi G., Pennacchi P. 2001. Pre-shaping Motion Input for a Rotating Flexible Link. International Journal of Solids and Structures, Cilt. 38, s. 2009-2023. CR - [20] Shan J., Liu H.T., Sun S. 2005. Modified input shaping for a rotating single-link flexible manipulator. Journal of Sound and Vibration,Cilt. 285, s. 187–207. CR - [21] Shin K., Brennan M.J. 2008. Two simple methods to suppress the residual vibrations of a translating or rotating flexible cantilever beam. Journal of Sound and Vibration, Cilt. 312, s. 140–150. CR - [22] Ozer A., Semercigil S.E. 2008. An event-based vibration control for a two-link flexible robotic arm: Numerical and experimental observations. Journal of Sound and Vibration, Cilt. 313, s. 375–394. CR - [23] Karagülle H., Malgaca L., Dirilmiş M., Akdağ M., Yavuz Ş. 2017. Vibration control of a two-link flexible manipulator. Journal of Vibration and Control, Cilt. 23, s. 2023-2034. CR - [24] ANSYS. 2018. Web adresi: http:// http://www.ansys.com/academic. Erişim Tarihi: 20.01.2018 CR - [25] Thomson W.T., & Dahleh M.D. (1988). Theory of Vibration with Applications 3rd edition. Englewood Cliffs: Prentice-Hall. CR - [26] MicroStrain Inc. 2015. Web adresi: http://www.microstrain.com/wireless/sensors. Erişim tarihi: 20.01.2018. UR - https://dergipark.org.tr/en/pub/deumffmd/issue//514635 L1 - https://dergipark.org.tr/en/download/article-file/629300 ER -