TY - JOUR T1 - Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması TT - Comparison of Dynamic Performance of Piezoelectric Sensors With Different Characteristic AU - Malgaca, Levent AU - Uyar, Mehmet PY - 2018 DA - September JF - Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi JO - DEUFMD PB - Dokuz Eylul University WT - DergiPark SN - 1302-9304 SP - 840 EP - 851 VL - 20 IS - 60 LA - tr AB - Günümüzdepiezoelektrik malzemeler algılayıcı veya uyarıcı olarak mühendislikuygulamalarında sıklıkla kullanılmaktadır. En yaygın kullanılan piezoelektrikmalzeme kurşun-zirkonyum-titanyum (PZT)piezo seramiktir. Piezo seramikler karakteristik özelliklerine göreyumuşak ve sert olarak iki ana sınıfa ayrılırlar ve PZT-2, PZT-4, PZT-5A,PZT-5H, PZT-8 olarak isimlendirilirler. Bu çalışmada, akıllı bir kirişte farklıkarakteristikti piezoelektrik algılayıcının dinamik cevapları sonlu elemanlaryöntemi kullanılarak ANSYS/Workbench programında incelenmiştir. Akıllı kiriş,alüminyum kiriş ile bir piezoelektrik algılayıcı ve bir piezoelektrikuyarıcıdan oluşmuştur. Akıllı kirişte hem uç noktasına tekil kuvvet, hemuyarıcıya voltaj, darbe ve adım girdiler şeklinde uygulanmıştır. Algılayıcı veyer değiştirme sinyalleri dinamik analiz yapılarak elde edilmiştir. Akıllıkirişin piezoelektrik algılayıcı konumu ve karakteristiğine göre farklı dinamikcevaplar verdiği gözlemlenmiştir. KW - Piezoelektrik KW - Adım Girdi KW - Darbe Girdi KW - Akıllı Kiriş KW - Sonlu Elemanlar Analizi N2 - Nowadays, piezoelectric materials havebeen widely used as a sensor or an actuator in engineering applications. Themost commonly used piezoelectric material is lead-zirconate-titanium (PZT)ceramic. According to the characteristics, piezo ceramics are classified intotwo main classes, soft PZTs and hard PZTs, and they are called as PZT-2, PZT-4,PZT-5A, PZT-5H, PZT-8. In this work, dynamic responses of a piezoelectricsensor with different characteristics of a smart beam were investigated byusing the finite element method in ANSYS/Workbench program. The smart beam wascomposed of an aluminum beam and a PZT sensor and a PZT actuator. Both a singleforce to the end point and a voltage to the actuator were applied in the smartbeam in the form of impulse and step inputs. Sensor and displacement signalswere obtained by performing the dynamic analysis. It was observed that thesmart beam has varied dynamic responses via the location and characteristic ofpiezoelectric sensor. CR - [1] Loghmani, A., Danesh, M., Keshmiri, M., Savadi, M. M. 2015. Theoretical and Experimental Study of Active Vibration Control of a Cylindrical Shell Using Piezoelectric Disks, Journal of Low Frequency Noise, Vibration and Active Control, Cilt. 34-3, s. 269-288. CR - [2] Dafang, W., Liang, H., Bing, P., Yuewu, W., Shuang, W. 2014. Experimental study and numerical simulation of active vibration control of a highly flexible beam using piezoelectric intelligent material, Aerospace Science and Technology, Cilt. 37(2014), s. 10-19. CR - [3] Yaman, Y., Çalışkan, T., Nalbantoğlu, V., Prasad, E., Waechter, D. 2002. Active vibration control of a smart beam, 6th CanSmart symposium, Montreal. CR - [4] Manning, W. J., Plummer, A. R., Levesley, M. C. 2000. Vibration control of a flexible beam with integrated actuators and sensors, Smart Materials Structures, Cilt. 9, s. 932–9. CR - [5] Kumar, K. R., Narayanan. S. 2008. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs, Smart Materials Structures, Cilt. 17(2008), 055008. doi:10.1088/0964-726/17/5/055008. CR - [6] Li, F., Lyu, F. 2014. Active vibration control of lattice sandwich beams using the piezoelectric actuator/sensor pairs, Composites: Part B, Cilt. 67(2014), s. 571-578. CR - [7] Zippo, A., Ferrari, G., Amabili, M., Barbieri, M., Pellicano, F. 2015. Active vibration control of a composite sandwich plate, Composite Structures, Cilt. 128(2015), s. 100-114. CR - [8] Malgaca, L. 2010. Integration of Active Vibration Control Methods with Finite Element Models of Smart Laminated Composite Structures. Composite Structures, Cilt. 92(2010), s.1651–1663. CR - [9] Tsushima, N., Su, W. 2017. Flutter suppression for highly flexible wings using passive and active piezoelectric effects, Aerospace Science and Technology, Cilt. 65(2017), s. 78-89. CR - [10] Chopra, I., Sirohi, J. 2013. Smart Structures Theory, Cambridge University Press, New York, USA. CR - [11] Malgaca L., Uyar, M., Yavuz, Ş. 2017. Active vibration suppression of a single-link smart flexible manipulator, International Journal of Natural and Engineering Sciences, Cilt. 11(1), s. 13-19. CR - [12] Vashist, S. K., Chhabra, D. 2014. Optimal placement of piezoelectric actuators on plate structures for active vibration control using genetic algorithm, Proc. SPIE 9057, Active and Passive Smart Structures and Integrated Systems Cilt. 905720, 9 Mart 2014. doi:0.1117/12.2044904;https://doi.org/10.1117/12.2044904. CR - [13] Ferrari, G., Amabili, M. 2015. Active vibration control of a sandwich plate by non-collocated positive position feedback, Journal of Sound and Vibration, Cilt. 342(2015), s. 44-56. CR - [14] Ihn, J., Chang, F. 2004. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. Validation using riveted joints and repair patches, Smart Materials Structures, Cilt. 13 (2004), s. 621–630. doi: 10.1088/0964-1726/13/3/021. CR - [15] Zhao, X., Gao, H., Zhang, G., Ayhan, B., ChimanKwan, F. Y., Rose, J. L. 2007. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring, Smart Materials Structures, Cilt. 16(2007), s. 1208–1217. doi:10.1088/0964-1726/16/4/032. CR - [16] Cotton, D. P. J., Chappell, P. H., Cranny, A., White, N. M., Beeby, S. B. 2007. A Novel Thick-Film Piezoelectric Slip Sensor for a Prosthetic Hand, IEEE sensors journal, Cilt. 7, no. 5, Mayıs 2007. doi: 10.1109/JSEN.2007.894912. CR - [17] Patil, C. S., Roy, S., Jagtap, K. R. 2017. Damage Detection in Frame Structure Using Piezoelectric Actuator, 5th International Conference of Materials Processing and Characterization (ICMPC 2016), Materials Today: Proceedings, Cilt. 4(2017), s. 687–692. CR - [18] Elshafei, M. A., Alraiess, F. 2013. Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory, Smart Materials and Structures, Cilt. 22(2013), s. 035006 (14pp). CR - [19] Park, I., Lee, U. 2012. Dynamic analysis of smart composite beams by using the frequency-domain spectral element method, Journal of Mechanical Science and Technology, Cilt. 26(8), s. 2511-2521. CR - [20] ANSYS Software, 2016. ANSYS, Inc. Erişim Adresi: http://www.ansys.com (Erişim tarihi: 22.08.2016). CR - [21] ABAQUS Software, 2016. ABAQUS UNIFIED FEA. Erişim Adresi: http://www.3ds.com/products-services/simulia/products/abaqus/ (Erişim Tarihi:22.08.2016). CR - [22] Preumont, A. 2011. Vibration Control of Active Structures: An Introduction, Springer Netherlands. CR - [23] Morgan Company, 2016. Products, Erişim Adresi: http://www.morgantechnicalceramics.com/ (Erişim Tarihi: 22.08.2016) CR - [24] Braunt, I., Coffignal, G., Lene, F. 2001, A methodology for determination of piezoelectric actuator and sensor location on beam structures, Journal of Sound and Vibration, Cilt. 5(2001), s. 861-882. doi:10.1006/jsvi.2000.3448. CR - [25] Yousefi-Koma, A. 1997. Active vibration control of smart structures using piezo elements, PhD Thesis, Carleton University, Ottawa, Ontario. CR - [26] Xu, S. X., Koko, T. S. 2002. Finite element analysis and design of actively controlled piezoelectric smart structures, Finite Element Analysis and Design, Cilt. 40(2004), s. 241–62. UR - https://dergipark.org.tr/en/pub/deumffmd/issue//514651 L1 - https://dergipark.org.tr/en/download/article-file/629317 ER -