TY - JOUR TT - Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination AU - Tekin, Huseyin Ozan AU - Mesbahi, Asghar AU - Singh, Viswanath P. AU - Kara, Umit AU - Manici, Tugba AU - Altunsoy, Elif Ebru PY - 2017 DA - April JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe University WT - DergiPark SN - 2149-3367 SP - 48 EP - 55 VL - 17 IS - 1 LA - en KW - Mammography KW - Average Glandular Dose KW - Monte Carlo Method N2 - Introduction: This study aimed to investigate capabities of MCNPX monte carlo code for calculationsof average absorbed dose in a breast phantom during mammography examination. Also, the effect oftube voltage and breast thickness on absorbed dose was determined by using Monte carlo method.Materials & Methods: In this study, the average absorbed dose values were investigated by usingMCNPX (version 2.4.0) Monte Carlo code. Validation of modeled simulation setup has been obtainedby calculating the HVL values of Al attenuator material for different tube voltage (26 to 32 kV ).Obtained HVL values were found to be comparable with experimental results and available MonteCarlo results. Thus, validated simulation setup has been used for investigation of average absorbeddose in a %50-%50 grandular-adipose breast phantom. Results: Our calculated results was consistentwith the previous studies and our MC model was validated. The results showed that changing tubevoltage from 26 to 32 kV leads to about 4 times increase in breast dose. While increasing breast thickness from 2 to 5 cm results in 1.6 times higer dose to breast. Conclusion: It can concluded that thebreast recieved dose depends strongly beam quality and breast thickness. Our modeling using MCNPXcan be used future dosimteric studies concering breast dose investigations in mamograpgyexaminations. CR - [1] Sechopoulos I.,Suryanarayanan S., Vedantham S., D'Orsi C.J., Karellas A., 2008. Radiation dose to organs and tissues from mammography: Monte Carlo and phantom study. Radiology.246(2):434-43 CR - [2] Sechopoulos I, Suryanarayanan S, Vedantham S, D'Orsi C, Karellas A., 2007. Computation of the glandular radiation dose in digital tomosynthesis of the breast. Med Phys.34(1):221-32. CR - [3] Bor D., Tukel S., Olgar T., Aydin E., 2008. Variations in breast doses for an automatic mammography unit. Diagn. Interv. Radiol. 14:122-126. CR - [4] Olgar T, Kahn T., Gosch D., 2012. Average Glandular Dose in Digital Mammography and Breast Tomosynthesis. Fortschr . Röntgenstr. 184: 911–918 . DOI: 10.1055/s-0032-1312877. CR - [5] Dance D.R., 1990. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys. Med. Biol., Vol. 35,No 9, 1211-1219. CR - [6] Ishii R.,Yoshida A., Ishii M., Fujimoto S., Henmi N., 2011. Precision of half-value layer measurement on mammography. Nihon Hoshasen Gijutsu Gakkai Zasshi. CR - 67(12):1533-9. [7] Diffey J., Cartwright L., Crocker J., Heggie J., 2014. Direct half value layer measurements in mammography - is near enough good enough?.Combined Scientific Meeting. DOI:10.1594/ranzcr2014/R-0127 CR - [8] Ramos M.A.P., Ferrer S., Verdu G., Padovani E., Campayo J.M., 2004. A mammographic phantom image reconstruction through Monte Carlo techniques. Nuclear Science Symposium Conference Record, IEEE, Volume: 5 DOI: 10.1109/NSSMIC.2004.1466322 CR - [9] Aznar M. C., Medin J., Hemdal B., Thilander Klang A., Bøtter-Jensen L., Mattsson S., 2005. A MONTE CARLO STUDY OF THE ENERGY DEPENDENCE OF Al2O3:C CRYSTALS FOR REAL-TIME IN VIVO DOSIMETRY IN MAMMOGRAPHY. Radiation Protection Dosimetry. Vol. 114, Nos 1-3, pp. 444–449. doi:10.1093/rpd/nch560 CR - [10] Koutalonis M., Delis H., Spyrou G., Costaridou L., Tzanakos G., Panayiotakis G., 2007. Contrast-to-noise ratio in magnification mammography: a Monte Carlo study. Phys. Med. Biol. 52. 3185–3199. doi:10.1088/0031-9155/52/11/017 CR - [11] Douglas E. P., Kuruvilla V., 2000. Digital mammography image simulation using Monte Carlo. Medical Physics 27, 568. doi: 10.1118/1.598896 CR - [12] Dance D. R., 1990. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose,’’ Phys. Med. Biol. 35, 1211– 1219. CR - [13] Dance D. R., Skinner C. L., Young K. C., Beckett J. R. Kotre C. J., 2000. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys. Med. Biol. 45,3225–3240. CR - [14] Wu X., Gingold E. L., Barnes G. T., and Tucker D. M., 1994. Normalized average glandular dose in molybdenum target-rhodium filter and rhodium targetrhodium filter mammography. Radiology 193, 83–89. CR - [15] Paixao L., Oliviera B., Viloria C., 2015. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography. Radiol Bras. Nov/Dez;48(6):363–367. http://dx.doi.org/10.1590/0100-3984.2014.0108 CR - [16] RSICC Computer Code Collection., 2002. MCNPX User’s manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications. CR - [17] Tekin H.O., 2016. MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data. Science and Technology of Nuclear Installations. Volume 2016, Article ID 6547318, 7 pages. http://dx.doi.org/10.1155/2016/6547318 CR - [18] Akkurt I., Tekin H.O., Mesbahi A., 2015. Calculation of Detection Efficiency fort he Gamma Detector using MCNP-X. Acta Physica Polonica A, 128 (2-B): 332-334. doi:10.12693/APhysPolA.128.B-332 CR - [19] Tekin H.O. and Kara U., 2016. Monte Carlo Simulation for Distance and Absorbed Dose Calculations in a PET-CT Facility by using MCNP-X. Journal of Communication and Computer, (13): 32-35 doi:10.17265/1548-7709/2016.01.005 CR - [20] Tekin H.O., Manici T., Ekmekci C., 2016. Investigation of Backscattered Dose in a Computerized Tomography (CT) Facility during Abdominal CT Scan by Considering Clinical Measurements and Application of Monte Carlo Method. Journal of Health Science 4, 131-134. doi: 10.17265/2328-7136/2016.03.004 CR - [21] Tekin H.O., Singh V.P., Manici T., 2017. Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Applied Radiation and Isotopes. Vol 121, pp. 122-125. doi:http://dx.doi.org/10.1016/j.apradiso.2016.12.040 CR - [22] Verdú G., Leön A., Villaescusa J.I., Salas M.D., Cuevas M.D., Bueno F., 2000. Mammographic Dosimetry Using MCNP-4B, Journal of Nuclear Science and Technology, 37:1, 875-879, doi:10.1080/00223131.2000.10875015 CR - [23] Hammerstein G.R., Miller D.W., White D.R., Masterson M.E., Woodard H.Q, Laughlin J.S., 1979. Absorbed radiation dose in mammography. Radiology, 130,pp 485-491. UR - https://dergipark.org.tr/en/pub/akufemubid/article/515920 L1 - https://dergipark.org.tr/en/download/article-file/631420 ER -