TY - JOUR T1 - AUTOMATIC SLEEP STAGE CLASSIFICATION USING ARTIFICIAL NEURAL NETWORKS WITH WAVELET TRANSFORM TT - DALGACIK DÖNÜŞÜMÜ İLE YAPAY SİNİR AĞLARI KULLANILARAK UYKU EVRELERİNİN OTOMATİK SINIFLANDIRILMASI AU - Öter, Ali AU - Aydoğan, Osman AU - Tuncel, Deniz PY - 2019 DA - January Y2 - 2018 DO - 10.28948/ngumuh.516809 JF - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JO - NÖHÜ Müh. Bilim. Derg. PB - Nigde Omer Halisdemir University WT - DergiPark SN - 2564-6605 SP - 59 EP - 68 VL - 8 IS - 1 LA - en AB - This study mainly focuses onautomatic sleep stage classification based on polysomnographic sleep recordingsobtained from obstructive sleep apnea subjects. Various studies have so farclassified sleep stages based on EEG recordings obtained from normal subjects.Because obstructive sleep apnea subjects’ sleep is often interrupted throughoutthe night, accurate scoring of their sleep disorders is important fordiagnosis. The signals for automatic sleep stages classification were selectedin accordance with American Academy of Sleep Medicine criteria. Feature vectorsconsisting of these signal power values for the automatic sleep stageclassification were calculated as inputs of ANN (Artificial Neural Networks). We re-ordered the featurevector table obtained from signals via the algorithm developed to increase thesuccess of the ANN. In this study, training and testing success of ANN weredetermined by using 10-fold cross-validation. In the study of automatic sleepstage scoring implemented by ANN, the correct recognition rate of Wakefulness,REM (Rapid Eye Movement), NREM1(Non REM1), NREM2, NREM3 were found as 95%, 93%,91%, 86% and 92%, respectively. The findings suggest that training and testsuccess of automatic sleep stage classification are better compared to theother studies in the literature. KW - Polysomnogram KW - Wavelet transform KW - Artificial Neural Networks KW - Sleep scoring KW - Sleep stages N2 - Bu çalışmada, Tıkayıcı uyku apnesi sahipkişilerden elde edilen polisomnografik uyku kayıtlarına dayanan otomatik uykuevresi sınıflandırma çalışması yapılmıştır. Çeşitli çalışmalarda, normalkişilerden elde edilen EEG kayıtlarına dayanarak uyku evrelerisınıflandırılmıştır. Tıkayıcı uyku apneli kişilerin uykusu gece boyuncasıklıkla kesintiye uğradığından, uyku bozukluklarının doğru skorlanması tanıiçin önemlidir. Otomatik uyku evrelerinin sınıflandırılması için sinyallerAmerikan Uyku Tıbbı Akademisi kriterlerine göre seçilmiştir. Otomatik uykuevrelerinin sınıflandırması için bu sinyal gücü değerlerinden oluşan özellikvektörleri, ANN (Yapay Sinir Ağları) girdileri olarak hesaplanmıştır. YSA'nınbaşarısını artırmak için geliştirilen algoritma ile sinyallerden elde edilenözellik vektör tablosunu yeniden sıralanmıştır. Bu çalışmada, YSA'nın eğitim vetest başarısı 10 kat çapraz doğrulama kullanılarak belirlenmiştir. YSA tarafından uygulanan otomatik uyku evreskorlaması çalışmasında, Uyanıklık, REM (Hızlı Göz Hareketi), NREM1 (Hızlı gözhareki olmayan), NREM2, NREM3'ün doğru tanıma oranı sırasıyla %95, % 93, % 91,% 86 ve % 92 olarak bulunmuştur. Bulgular, otomatik uyku evresi sınıflandırmaeğitim ve test başarısının literatürdeki diğer çalışmalara göre daha iyiolduğunu göstermektedir. CR - [1] HORI T, KOGA E., SHIRAKAWA S., INOUE K., UCHIDA S., KUWAHARA H., KOUSAKA M., KOBAYASHI T., TSUJI Y., TERASHIMA M., FUKUDA K., FUKUDA, N, “Proposed supplements and amendments to A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects, the Rechtschaffen & Kales (1968) standard”, Psychiatry and Clinical Neurosciences, vol. 55, p. 305–310, 2001. CR - [2] R.B. BERRY, R. BROOKS, C.E. GAMALDO, S.M. HARDING, C. MARCUS, B. VAUGHN, FOR THE AMERICAN ACADEMY OF SLEEP MEDICINE. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.3. American Academy of Sleep Medicine, Westchester, IL, 2016. CR - [3] HSU Y.L, YANG Y.T, WANG J. S, HSU C.-Y, “Automatic sleep stage recurrent neural classifier using energy features of EEG signals”, Neurocomputing, vol. 104 p.105–114, 2013. CR - [4] KÖKTÜRK O, “Scoring of Sleep Recordings, Turkish Respiratory Society”, Journal of Respiration, 15, 14-29, 2013. CR - [5] KILINÇ O., BAYRAM H., Obstructive Sleep Apnea Syndrome Diagnosis and Treatment Convention Report, Journal of the Turkish Thoracic Society, volume 13, 2012. CR - [6] VIRKKALA J, HASAN J, VARRI A, HIMANEN S.-L, MULLER K, “A Automatic sleep stage classification using two-channel electro-oculography”, Journal of Neuroscience Methods vol. 166, p.109–115, 2007. CR - [7] HUUPPONEN E, KULKAS A, SAASTAMOINEN A, TENHUNEN M, HIMANEN S. L, “Identification of Deep Sleep and Awake with Computational EEG Measures”, Journal Medical Systems, v: 35, p. 1413–1420, 2011. CR - [8] FRAIWAN L, LWEESY K, KHASAWNEH N, WENZ H, DICKHAUS H, “Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier”, Computer methods and programs in biomedicine vol.108, p. 10–19, 2012. CR - [9] FAKHRA S. M, TORBATIA M.M, HILL M, HILL C. M, WHITE P. R, “Signal processing techniques applied to human sleep EEG signals—A review”, Biomedical Signal Processing and Control vol.10, p. 21–33, 2014. CR - [10] STEPNOWSKY C, LEVENDOWSKI D, POPOVIC D, AYAPPA I, RAPOPORT D. M, “Scoring accuracy of automated sleep staging from a bipolar electroocular recording compared to manual scoring by multiple raters”, Sleep Medicine vol.14, p. 1199–1207, 2013. CR - [11] ESTÉVEZ D.A., FERNANDEZ- J.M. HERNÁNDEZ E., -BONILLO V.M., “A method for the automatic analysis of the sleep macrostructure in continuum”, Expert Systems with Applications 40(5), 2012. CR - [12] DUMAN F, Identification of Sleep Condition by Analysing EEG Signals, Masters Thesis, Ankara University, Department of Electronic Engineering, 2005. CR - [13] ERDAMAR A, DUMAN F., S. YETKIN S., “A wavelet and teager energy operator based method for automatic detection of K Complex in sleep EEG”, Expert Systems with Applications, 39 (1), 1284–1290, 2004. CR - [14] KIYMIK M. K, AKIN M, SUBASI. A, “Automatic recognition of alertness level by using wavelet transform and artificial neural network”, Journal of Neuroscience Methods, vol. 139 p. 231–240, 2004. CR - [15] KOHAVI R, A study of cross validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on artificial intelligence pp. 1137–1143, 2002. CR - [16] EBRAHIMI F, MIKAEILI M, ESTRADA E, NAZERAN H, “Automatic Sleep Stage Classification Based on EEG Signals by Using Neural Networks and Wavelet Packet Coefficients”, 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, August 20-24, 2008. CR - [17] JORDAN T. J, Understanding medical information: A user’s guide to informatics and decision making. New York: McGraw-Hill, 2002. CR - [18] PAPOULIS A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill International Editions, 1991. UR - https://doi.org/10.28948/ngumuh.516809 L1 - https://dergipark.org.tr/en/download/article-file/632707 ER -