@article{article_519464, title={Performance of Cellular Neural Network Based Channel Equalizers}, journal={Balkan Journal of Electrical and Computer Engineering}, volume={8}, pages={1–6}, year={2020}, DOI={10.17694/bajece.519464}, author={Özmen, Atilla and Tander, Baran and Şenol, Habib}, keywords={Cellular Neural Networks,channel equalization,MLP equalizer,MMSE equalizer}, abstract={<div> <span style="font-size:12px;">Abstract—In this paper, a popular dynamic neural network  </span> <span style="font-size:12px;">structure called Cellular Neural Network (CNN) is employed  </span> <span style="font-size:12px;">as a channel equalizer in digital communications. It is shown  </span> <span style="font-size:12px;">that, this nonlinear system is capable of suppressing the effect of  </span> <span style="font-size:12px;">intersymbol interference (ISI) and the noise at the channel. The  </span> <span style="font-size:12px;">architecture is a small-scaled, simple neural network containing  </span> <span style="font-size:12px;">only 25 neurons (cells) with a neighborhood of r = 2 , thus  </span> <span style="font-size:12px;">including only 51 weight coefficients. Furthermore, a special  </span> <span style="font-size:12px;">technique called repetitive codes in equalization process is also  </span> <span style="font-size:12px;">applied to the mentioned CNN based system to show that the  </span> <span style="font-size:12px;">two-dimensional structure of CNN is capable of processing such  </span> <span style="font-size:12px;">signals, where performance improvement is observed. Simulations  </span> <span style="font-size:12px;">are carried out to compare the proposed structures with  </span> <span style="font-size:12px;">minimum mean square error (MMSE) and multilayer perceptron  </span> <span style="font-size:12px;">(MLP) based equalizers. </span> </div>}, number={1}, publisher={MUSA YILMAZ}