TY - JOUR T1 - TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ TT - Determinatıon of Best Wall Thickness for High Strenght Low Alloy (HSLA) Steel Front Collision Railsin Vehicles AU - Bilbay, Fahri AU - Gülçimen Çakan, Betül AU - Ensarioğlu, Cihat AU - Çakır, Mustafa PY - 2019 DA - August Y2 - 2019 DO - 10.17482/uumfd.520999 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ University WT - DergiPark SN - 2148-4155 SP - 461 EP - 476 VL - 24 IS - 2 LA - tr AB - Bu çalışmada,rijit duvar testi sanal ortamda simule edilerek yüksek mukavemetli düşükalaşımlı çelik ön çarpışma kolu et kalınlığının aracın çarpışma performansınaetkisi incelenmiş ve en uygun et kalınlığı tespit edilmiştir. Ön çarpışmakollarında HSLA (High-Strength Low-Alloy) çelik grubundaki FEE340 malzemesikullanılmış ve altı farklı et kalınlığının aracın çarpışma performansınaetkileri karşılaştırılmıştır. Simülasyonlarda çarpışma kolu, çarpışma kutusu veön tampon (destek) traversinden oluşan yarım araç modeli kullanılmıştır. Farklıkalınlığa sahip ön çarpışma kollarının çarpışma analizleri Abaqus sonluelemanlar yazılımı ile gerçekleştirilmiştir. Simülasyonlardan, toplamdeplasman, çarpışma kuvveti verimliliği (CFE), yolcu kabinine iletilen kuvvetmiktarı ve her bir çarpışma elemanı tarafından sönümlenen enerji miktarısonuçları elde edilmiştir. Simülasyonda kullanılan taşıt modeli için, yolcukabinine iletilen kuvvet, ivme ve deplasman miktarları değerlendirildiğindeHSLA çelik ön çarpışma kolu için en uygun et kalınlığının 2 mm olduğugörülmüştür. KW - çarpışma analizi KW - sonlu elemanlar KW - ön çarpışma kolu KW - HSLA KW - et kalınlığı N2 - In this study, the rigid wall test was simulated in avirtual environment and the effect of high strength low alloy steel frontcollision rail wall thickness on the crash performance of a vehicle wasinvestigated and the best wall thickness was determined for the front collisionrails. The FEE340 material in the HSLA (High-Strength Low-Alloy) steel groupwas used in the front collision rails and the effects of the six differentmaterial wall thicknesses used in the front collision rails were compared withregard to the crash performance of the vehicle. The crash analyses of thefrontal collision rails with various thicknesses were performed by the Abaqusfinite element software. Total displacement, crush force efficiency (CFE), theamount of force delivered to the passenger compartment and the amount of energydamped by each collision member results were acquired from the simulations. Forthe vehicle model used in the simulations, when the amounts of force deliveredto the passenger life cage, acceleration and displacement were evaluated, itwas seen that the best wall thickness for the HSLA steel front collision railwas 2 mm. CR - 1. Deb, A., Gunti, R. S., Chou, C., Dutta, U. (2015). Use of truncated finite element modeling for efficient design optimization of an automotive front end structure (No. 2015-01-0496). SAE Technical Paper. CR - 2. Du, Q. (2016). Uncertainty optimization of thin-walled beam crashworthiness based on approximate model with step encryption technology. SAE International Journal of Materials and Manufacturing, 9(3), 622-630. CR - 3. Ensarioglu C., Gulcimen Cakan B., Reis M., Koluk H., Celik H., Uguz A., Cakir M. C. (2018). Reinforcement of a Thermoplastic Crash-Box with Aluminum Foam and Tie Beams. Academic Conference on Engineering, IT and Artificial Intelligence (AC-EITAI 2018), Prag. CR - 4. Eren, I., Gür, Y., Aksoy, Z. (2009). Finite element analysis of collapse of front side rails with new types of crush initiators. International journal of automotive technology, 10(4), 451-457. CR - 5. George Mason University, (2016). 2010 Toyota Yaris Finite Element Model Validation Detail Mesh, Center for Collosion Safety and Analysis. (Doi: 10.13021/G8CC7G) CR - 6. Ghannam, M. Y., Niesluchowski, M., Culkeen, P. M. (2002). Analysis of a Frontal Rail Structure in a Frontal Collision (No. 2002-01-0688). SAE Technical Paper. CR - 7. Gulcimen Cakan B., Reis M., Ensarioglu C., Koluk H., Yeni H., Uguz A., Cakir M. C. (2018). Termoplastik çarpışma kutularında alüminyum köpük takviyesinin çarpışma karakteristiğine etkisi. 18th International Conference on Machine Design and Production, 3-6 July, Eskişehir. CR - 8. Hussain, N. N., Regalla, S. P., Rao, Y. V. D. (2017). Low velocity Impact Characterization of Glass Fiber Reinforced Plastics for Application of Crash Box. Materials Today: Proceedings, 4(2), 3252-3262. CR - 9. Kim, H. S. (2001). Analysis of crash response of aluminium foam-filled front side rail of a passenger car. International journal of crashworthiness, 6(2), 189-208. CR - 10. Li, Q. F., Liu, Y. J., Wang, H. D., Yan, S. Y. (2009). Finite element analysis and shape optimization of automotive crash-box subjected to low velocity impact. In Measuring Technology and Mechatronics Automation, 2009. ICMTMA'09. International Conference on (Vol. 2, pp. 791-794). IEEE. CR - 11. Liu, X. T., Liu, C. H., Shi, S. L., Zhao, L. H., Huang, H. (2010). The analysis of front rail crash on mini-bus chassis. In Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on (Vol. 2, pp. 14-16). IEEE. CR - 12. Öztürk, İ., Kaya, N. (2008). Otomobil ön tampon çarpışma analizi ve optimizasyonu. Uludağ University Journal of The Faculty of Engineering, 13(1). CR - 13. Peroni, L., Avalle, M., Belingardi, G. (2009). Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques. International journal of impact engineering, 36(3), 498-511. CR - 14. Rao Lakshmana C., Narayanamurthy V., Simha K. R. Y. (2016). Applied Impact Mechanics . Ane Books Pvt. Ltd. (ISBN : 978-11-1924-180-5). CR - 15. Saputra, H., & Rochardjo, H. S. (2017). The prediction of energy-absorption on the car crush box. In Science and Technology-Computer (ICST), 2017 3rd International Conference on (pp. 51-56). IEEE. CR - 16. Tahan, F. J., Park, C. K., Morgan, R. M., Cui, C., Brar, B., Shanks, K., Kan, C. D. (2013). The Effect of Reduced Mass on Frontal Crashworthiness. In The pro-ceedings of the IRCOBI 2013 Conference. CR - 17. Wang, T., Wang, L., Wang, C., Zou, X. (2018). Crashworthiness analysis and multi-objective optimization of a commercial vehicle frame: A mixed meta-modeling-based method. Advances in Mechanical Engineering, 10(5), 1687814018778480. UR - https://doi.org/10.17482/uumfd.520999 L1 - https://dergipark.org.tr/en/download/article-file/814851 ER -