@article{article_524323, title={Suborbital graphs for the group $\Gamma^2$}, journal={Hacettepe Journal of Mathematics and Statistics}, volume={44}, pages={1033–1044}, year={2015}, author={Güler, Bahadır Özgür and Beşenk, Murat and Kesicioğlu, Yavuz and Değer, Ali Hikmet}, keywords={Modular group,Group action,Suborbital graphs}, abstract={<div class="page" title="Page 1" style="font-family: -webkit-standard;"> <div class="layoutArea"> <div class="column"> <p> <span style="font-size: 9pt; font-family: SFRM0900;">In this paper, we investigate suborbital graphs formed by the action of  </span> <span style="font-size: 9pt; font-family: CMR9;">Γ </span> <span style="font-size: 6pt; font-family: CMR6; vertical-align: 4pt;">2  </span> <span style="font-size: 9pt; font-family: SFRM0900;">which is the group generated by the second powers of the elements of the modular group  </span> <span style="font-size: 9pt; font-family: CMR9;">Γ  </span> <span style="font-size: 9pt; font-family: SFRM0900;">on  </span> <span style="font-size: 9pt; font-family: MSBM10;">Q </span> <span style="font-size: 9pt; font-family: CMR9; vertical-align: 2pt;">ˆ </span> <span style="font-size: 9pt; font-family: SFRM0900;">. Firstly, conditions for being an edge, self-paired and paired graphs are provided, then we give necessary and sufficient conditions for the suborbital graphs to contain a circuit and to be a forest. Finally, we examine the connectivity of the subgraph  </span> <span style="font-size: 9pt; font-family: CMMI9;">F </span> <span style="font-size: 6pt; font-family: CMMI6; vertical-align: -1pt;">u,N  </span> <span style="font-size: 9pt; font-family: SFRM0900;">and show that it is connected if and only if  </span> <span style="font-size: 9pt; font-family: CMMI9;">N  </span> <span style="font-size: 9pt; font-family: CMSY9;">≤  </span> <span style="font-size: 9pt; font-family: CMR9;">2 </span> <span style="font-size: 9pt; font-family: SFRM0900;">. </span> </p> </div> </div> </div>}, number={5}, publisher={Hacettepe University}