TY - JOUR T1 - Quasi-primry submodules satisfying the primeful property I AU - Moghimi, Hosein Fazaeli AU - Samiei, Mahdi PY - 2016 DA - October JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 1421 EP - 1434 VL - 45 IS - 5 LA - en AB - Let $R$ be a commutative ring with identity and $M$a unital$R$-module. In this article we extend the notion of quasi-primary ideals to submodules. A proper submodule $N$ of $M$ is called quasi-primary if whenever $rx\in N$ for $r\in R$ and $x\in M$, then $r\in \sqrt{(N:M)}$ or $x\in radN$ where $radN$ is the intersection of all prime submodules of $M$ containing $N$. Also, we say that a submodule $N$ of $M$satisfies the primeful property if $M/N$ is a primeful$R$-module. For a quasi-primary submodule $N$ of $M$ satisfying the primeful property,$\sqrt{(N:M)}$ is a prime ideal of $R$. For the existence of a module-reduced quasi-primary decomposition, the radical of each term appeared in decomposition must be prime. We provide sufficient conditions, involving the saturation and torsion arguments, to ensure that this property holds as is valid in the ideal case. It is proved that for a submodule $N$ of $M$ over a Dedekind domain $R$ which satisffies the primeful property, $N$ is quasi-primary if and only if $radN is prime. KW - Quasi-primary submodule KW - Primeful property KW - Prime submodule KW - Radical of a submodule KW - Saturation KW - Torsion CR - . CR - . UR - https://dergipark.org.tr/en/pub/hujms/issue//524332 L1 - https://dergipark.org.tr/en/download/article-file/644708 ER -