TY - JOUR T1 - Applications of $k$-Fibonacci numbers for the starlike analytic functions AU - Sokół, Janusz AU - Raina, Ravinder Krishna AU - Yilmaz Özgür, Nihal PY - 2015 DA - February JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 121 EP - 127 VL - 44 IS - 1 LA - en AB - The $k-$ Fibonacci numbers $F_{k,n}\:(k>0)$, defined recursively by $F_{k,0}=0$ , $F_{k,1}=1$ and $F_{k,n}=kF_{k,n}+F_{k,n-1}$ for $n\geq1$ are used to define a new class $\mathcal{S}\mathcal{L}^k$.The purpose of this paper is to apply properties of $k$-Fibonacci numbers to consider the classical problem of estimation ofthe Fekete–Szegö problem for the class$\mathcal{S}\mathcal{L}^{k}$. An application for inversefunctions is also given. KW - univalent functions KW - convex functions KW - starlike functions KW - subordination KW - $k$-Fibonacci numbers CR - . . . UR - https://dergipark.org.tr/en/pub/hujms/issue//524371 L1 - https://dergipark.org.tr/en/download/article-file/644752 ER -