TY - JOUR T1 - Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰ AU - Veninstine Vivik, J. PY - 2019 DA - August Y2 - 2018 DO - 10.31801/cfsuasmas.524481 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 1294 EP - 1300 VL - 68 IS - 2 LA - en AB - The equitable edge chromatic number is the minimum number of colors required to color the edges of a graph G and satisfies the criterion, if for each vertex v∈V(G), the number of edges of any one color incident with v differs from the number of edges of any other color incident with v by atmost one. In this paper, the equitable edge chromatic number of tensor product of Path P_{m} coupled with Crown S_{n}⁰ and also two Crown graphs S_{m}⁰ along with S_{n}⁰ are obtained. KW - Equitable edge coloring KW - tensor product KW - Crown graph CR - Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, New York; The Macmillan Press Ltd, 1976. CR - Harary, Frank, Graph Theory, Narosa Publishing home 1969. CR - Hilton, A.J.W. and de Werra, D.,A sufficient condition for equitable edge-colorings of simple graphs, Discrete Mathematics 128, (1994), 179-201. CR - Meyer, W., Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920-922. CR - Veninstine Vivik, J. and Girija, G., Equitable edge coloring of some graphs, Utilitas Mathematica, 96, (2015), 27--32. CR - Veninstine Vivik, J., and Girija, G., Equitable Edge Chromatic Number of Mycielskian of Graphs, Far East Journal of Mathematics, 101(9), 2017, 1887-1895. CR - Vizing, V.G., Critical graphs with given chromatic class, Metody Diskret. Analiz., 5(1965), 9-17. CR - Weichsel, Paul.M., The Kronecker product of graphs, Proc. Amer. Math. Society, Vol.8, (1962), 47-52. CR - Lin, Wu-Hsiung and Chang, Gerard, J., Equitable Colorings of Kronecker product of Graphs, Discrete Applied Mathematics, Vol.158, (2010), 1816-1826. CR - Zhang, Xia and Liu, Guizhen, Equitable edge-colorings of simple graphs, Journal of Graph Theory, 66, (2010), 175-197. UR - https://doi.org/10.31801/cfsuasmas.524481 L1 - https://dergipark.org.tr/en/download/article-file/644885 ER -