TY - JOUR T1 - Complete qth moment convergence of weighted sums for arrays of row-wise extended negatively dependent random variables AU - Guo, M. L.. PY - 2014 DA - April JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 323 EP - 335 VL - 43 IS - 2 LA - en AB - In this paper, the complete qth moment convergence of weighted sumsfor arrays of row-wise extended negatively dependent (abbreviated toEND in the following) random variables is investigated. By usingHoffmann-Jφrgensen type inequality and truncation method, some general results concerning complete qth moment convergence of weightedsums for arrays of row-wise END random variables are obtained. Astheir applications, we extend the corresponding result of Wu (2012) tothe case of arrays of row-wise END random variables. The complete qthmoment convergence of moving average processes based on a sequenceof END random variables is obtained, which improves the result of Liand Zhang (2004). Moreover, the Baum-Katz type result for arrays ofrow-wise END random variables is also obtained. KW - END random variables KW - Weighted sums KW - Complete moment convergence KW - Complete convergence CR - 1] Hsu, P. L. and Robbins, H. Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. U.S.A., 33(2), 25–31, 1947. CR - [2] Baum, L. E. and Katz, M. Convergence rates in the law of large numbers. Trans. Am. Math. Soc., 120(1), 108–123, 1965. CR - [3] Liu, L. Precise large deviations for dependent random variables with heavy tails. Statist. Probab. Lett., 79(9), 1290–1298, 2009. CR - [4] Lehmann, E. L. Some concepts of dependence. Ann. Math. Statist., 37(5), 1137–1153, 1966. CR - [5] Joag-Dev, K. and Proschan, F. Negative association of random variables with applications. Ann. Statist., 11(1), 286–295, 1983. 334 CR - [6] Shen, A. T. Probability inequalities for END sequence and their applications. J. Inequal. Appl., 2011, 98, 2011. CR - [7] Chen, Y. Q. and Chen, A. Y. and Ng, K. W. The strong law of large numbers for extend negatively dependent random variables. J. Appl. Prob., 47(4), 908–922, 2010. CR - [8] Baek, J. I., Choi, I. B. and Niu, S. l. On the complete convergence of weighted sums for arrays of negatively associated variables. J. Korean Stat. Soc., 37(1), 73–80, 2008. CR - [9] Baek, J. I. and Park, S. T. Convergence of weighted sums for arrays of negatively dependent random variables and its applications. J. Stat. Plan. Infer., 140(9), 2461–2469, 2010. CR - [10] Wu, Q. A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables. J. Inequal. Appl.,2012: 50, 2012. CR - [11] Chow, Y. S. On the rate of moment convergence of sample sums and extremes. Bull. Inst. Math. Acad. Sinica, 16(3), 177–201, 1988. CR - [12] Liang, H. Y., Li, D. L. and Rosalsky, A. Complete moment convergence for sums of negatively associated random variables. Acta Math. Sinica, English Series, 26(3), 419–432, 2010. CR - [13] Sung, S. H. Complete qth moment convergence for arrays of random variables. J. Inequal. Appl., 2013, 24, 2013. CR - [14] Guo, M. L. On complete moment convergence of weighted sums for arrays of row-wise negatively associated random variables. Stochastics: Int. J. Probab. Stoch. Proc., 86(3), 415-428, 2014. CR - [15] Li, Y. X. and Zhang, L. X. Complete moment convergence of moving-average processes under dependence assumptions. Statist. Probab. Lett., 70(3), 191–197, 2004. CR - [16] Wu, Q. Y. Probability Limit Theory for Mixed Sequence. China Science Press, Beijing, 2006. UR - https://dergipark.org.tr/en/pub/hujms/issue//524485 L1 - https://dergipark.org.tr/en/download/article-file/644889 ER -