TY - JOUR T1 - Kitosan-Vermikülit Kompoziti Kullanılarak Sulu Çözeltiden Etkin Kurşun Giderimi: Denge, Kinetik ve Termodinamik Çalışmalar TT - Efficient Lead Removal from Aqueous Solution Using Chitosan-Vermiculite Composite: Equilibrium, Kinetic and Thermodynamic Studies AU - Şenol, Zeynep Mine PY - 2020 DA - January DO - 10.21541/apjes.531737 JF - Academic Platform - Journal of Engineering and Science JO - APJES PB - Akademik Perspektif Derneği WT - DergiPark SN - 2147-4575 SP - 15 EP - 21 VL - 8 IS - 1 LA - tr AB - Bu çalışmada, sulu çözeltiden kurşun iyonlarınınetkin giderimi için düşük maliyetli, doğal etkin bir adsorban, kitosan (Ch) –vermikülit (V) kompozit materyali sentezlenmiştir. Ch-V kompoziti FT-IR SEM-EDXve PZC analizleri ile karakterize edilmiştir. Pb2+ için Ch-Vkompozitinin adsorban özellikleri adsorpsiyonun pH, derişim, kinetik (zaman),termodinamik (sıcaklık) ve geri kazanım açısından değerlendirilmiştir. Eldeedilen deneysel veriler Langmiur, Freundlich ve Dubinin Radushkevich izotermmodellerine uygulanmış ilgili parametreler türetilmiştir. Langmiur eiştliğindenmaksimum adsorpsiyonkapasitesi 0.154 molkg-1 ve KL değeri ise 3441 Lmol-1olarak bulunmuştur. Freudlich modelinden adsorpsiyon kapasitesinin bir ölçüsüolan XF 10.3 ve β yüzey heterojenliği ise 0.537 bulunmuştur.Sonuçlar deneysel verilerin Freundlich modeline daha iyi uyum sağladığınıortaya koymuştur. Dubinin Radushkevich modelinden adsorpsiyonenerjisi 9.7 kJ mol-1 olarak bulunmuştur ki bu durum adsorpsiyonsürecinin kimyasal olduğunu ifade etmektedir. Adsorpsiyon kinetiğinin yalancıikinci derece modele uyum sağladığı görülmüştür. Adsorpsiyonun termodinamikdeğerlendirilmesinden ΔH0 değeri 5.09 kjmol-1 bulunmuşturki bu durum adsorpsiyonun endotermik olduğunu işaret eder. ΔS0 ise69.7 Jmol-1K-1 olarak bulunmuştur ki bu durum adsorpsiyonsürecinde biyosorbent/çözelti arayüzündeki rastgelelikte bir artma olduğunugösterir. 298.15 0C için Gibbs serbest enerji değişimi, -15.7 kJ mol-1olarak bulunmuştur ve bu durum adsorpsiyonun kendiliğinden olduğunugöstermiştir. Geri kazanım çalışmaları Ch-V kompozitinin iyi biradsorpsiyon/desorpsiyon performansına sahip olduğunu göstermiştir. KW - Kitosan KW - vermikülit KW - kompozit KW - adsorpsiyon KW - kurşun N2 - Inthis study, a cost effective, naturally effective adsorbent, chitosan (Ch) -vermiculite (V) composite material for the efficient removal of lead ions fromaqueous solution was synthesized. The Ch-V composite was characterized by FT-IRSEM-EDX and PZC analyzes. The adsorbent properties of Ch-V composite for Pb2​​+were evaluated in terms of pH, concentration, kinetic (time), thermodynamic(temperature) and recovery of adsorption. The experimental data obtained arederived from the relevant parameters applied to the Radushkevich isothermmodels of Langmiur, Freundlich and Dubinin. The maximum adsorption capacity wasfound to be 0.154 mol kg-1 and the KL value was 3441 Lmol-1.Freudlich model is a measure of adsorption capacity XF 10.3 and βsurface heterogeneity is 0.537. The results showed that the experimental datafit better with the Freundlich model. The adsorption energy of DubinRadushkevich model was found to be 9.7 kJ mol-1, which indicatesthat the adsorption process is chemical. Adsorption kinetics were found toadapt to the pseudo-second model. The olduğun ΔH0 value of adsorption was foundto be 5.09 kjmol-1, indicating that the adsorption is endothermic. ΔS0was found as 69.7 Jmol-1K-1 which indicates an increasein the randomness of the biosorbent/solution interface during the adsorptionprocess. Gibbs free energy exchange for 298.15 0C was found to be-15.7 kJ mol-1, indicating that adsorption was spontaneous. Therecovery studies showed that the Ch-V composite had good adsorption/desorptionperformance. CR - L. Jin and R. Bai, “Mechanisms of Lead Adsorption on Chitosan/PVA Hydrogel Beads,” Langmuir, vol. 18, no. 25, pp. 9765–9770, 2002. CR - F. Banat, B. Al-Bashir, S. Al-Asheh, and O. Hayajneh, “Adsorption of phenol by bentonite,” Environmental Pollution, vol. 107, no. 3, pp. 391–398, 2000. CR - V. Meshko, L. Markovska, M. Mincheva, and A. Rodrigues, “Adsorption of basic dyes on granular acivated carbon and natural zeolite,” Water Research, vol. 35, no. 14, pp. 3357–3366, 2001. CR - A. Sarı, D. Çıtak, and M. Tuzen, “Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite,” Chemical Engineering Journal, vol. 162, no. 2, pp. 521–527, 2010. CR - T. Mathialagan and T. Viraraghavan, “Adsorption of Cadmium from Aqueous Solutions by Vermiculite,” Separation Science and Technology, vol. 38, no. 1, pp. 57–76, 2003. CR - A. B. Albadarin, C. Mangwandi, A. A. H. Al-Muhtaseb, G. M. Walker, S. J. Allen, and M. N. Ahmad, “Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent,” Chemical Engineering Journal, vol. 179, pp. 193–202, 2012. CR - R. Schmuhl, H. Krieg, and K. Keizer, “Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies,” Water SA, vol. 27, no. 1, 2004. CR - X. Guo, S. Zhang, and X.-Q. Shan, “Adsorption of metal ions on lignin,” Journal of Hazardous Materials, vol. 151, no. 1, pp. 134–142, 2008. CR - M. Oktav Bulut and U. Elibüyük. “Yengeç kitininden kitosan üretimi,” Erzincan University Journal of Science and Technology, vol. 10, no. 2, pp. 213-219, 2017. CR - [S. Şimşek, Z. M. Şenol, and H. I. Ulusoy, “Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of uranyl ions,” Journal of Hazardous Materials, vol. 338, pp. 437–446, 2017. CR - A. Pawlak and M. Mucha, “Thermogravimetric and FTIR studies of chitosan blends,” Thermochimica Acta, vol. 396, no. 1-2, pp. 153–166, 2003. CR - S. Gu, L. Wang, X. Mao, L. Yang, and C. Wang, “Selective Adsorption of Pb(II) from Aqueous Solution by Triethylenetetramine-Grafted Polyacrylamide/Vermiculite,” Materials, vol. 11, no. 4, p. 514, 2018. CR - K. Foo and B. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chemical Engineering Journal, vol. 156, no. 1, pp. 2–10, 2010. CR - H.M.F. Freundlich. “Over the adsorption in solution.” The Journal of Physical Chemistry, vol. 57, no. 1, pp. 385–471, 1906. [15] M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich. “Sorption and structure of active carbons I. Adsorption of organic vapors.” Zhurnal Fizicheskoi Khimii, vol. 21, no. 1, pp. 1351–1362, 1947. CR - F. Helfferich. “Ion exchange.” New York: McGraw Hill, 1962. CR - S. Lagergren. “Zur theorie der sogenannten adsorption gel¨oster stoffe.” K. Sven. Vetenskapsakad. Handl, vol. 24, no. 1, pp. 1–39, 1898. CR - Y. Ho and G. Mckay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451–465, 1999. CR - Y. Ho, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat,” Water Research, vol. 34, no. 3, pp. 735–742, 2000. CR - Y. Ho and A. Ofomaja, “Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber,” Journal of Hazardous Materials, vol. 129, no. 1-3, pp. 137–142, 2006. CR - F.-C. Wu, R.-L. Tseng, and R.-S. Juang, “Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics,” Chemical Engineering Journal, vol. 153, no. 1-3, pp. 1–8, 2009. CR - R. Aravindhan, J. R. Rao, and B. U. Nair, “Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis,” Journal of Hazardous Materials, vol. 142, no. 1-2, pp. 68–76, 2007. CR - A. Sarı, M. Tuzen, and M. Soylak, “Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay,” Journal of Hazardous Materials, vol. 144, no. 1-2, pp. 41–46, 2007. UR - https://doi.org/10.21541/apjes.531737 L1 - https://dergipark.org.tr/en/download/article-file/888559 ER -