TY - JOUR T1 - Generalized Simpson Type Integral Inequalities AU - Sarıkaya, Mehmet Zeki AU - Bardak, Sakine PY - 2019 DA - April Y2 - 2019 JF - Konuralp Journal of Mathematics JO - Konuralp J. Math. PB - Mehmet Zeki SARIKAYA WT - DergiPark SN - 2147-625X SP - 186 EP - 191 VL - 7 IS - 1 LA - en AB - In this paper, we have established some generalized Simpson type inequalities for convex functions. Furthermore, inequalities obtained in special case present a refinement and improvement of previously known results. KW - Simpson type inequalities KW - convex functions KW - integral inequalities CR - [1] M. Alomari, M. Darus and S.S. Dragomir, New inequalities of Simpson´ıs type for sconvex functions with applications, RGMIA Res. Rep. Coll., 12 (4) (2009), Article 9. CR - [2] S.S. Dragomir, R.P. Agarwal and P. Cerone, On Simpson´ıs inequality and applications, J. of Inequal. Appl., 5(2000), 533-579. CR - [3] S.S. Dragomir. On Simpson’s quadrature formula for differentiable mappings whose derivatives belong to lp spaces and applications. J. KSIAM, 2 (1998), 57–65. CR - [4] S.S. Dragomir, On Simpson’s quadrature formula for Lipschitzian mappings and applications Soochow J. Mathematics, 25 (1999), 175–180. CR - [5] T. Du, Y. Li and Z. Yang, A generalization of Simpson’s inequality via differentiable mapping using extended (s;m)-convex functions, Applied Mathematics and Computation 293 (2017) 358–369 CR - [6] S. Hussain and S. Qaisar, More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings. Springer Plus (2016), 5:77. CR - [7] B.Z. Liu, An inequality of Simpson type, Proc. R. Soc. A, 461 (2005), 2155-2158. CR - [8] J. Pecaric, F. Proschan and Y.L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991. CR - [9] J. Pecaric., and S. Varosanec, A note on Simpson’s inequality for functions of bounded variation, Tamkang Journal of Mathematics, Volume 31, Number 3, Autumn (2000), 239–242. CR - [10] S. Qaisar, C.J. He, S. Hussain, A generalizations of Simpson’s type inequality for differentiable functions using (a;m)-convex functions and applications, J. Inequal. Appl. 2013 (2013) 13. Article 158. CR - [11] H. Kavurmaci, A. O. Akdemir, E. Set and M. Z. Sarikaya, Simpson’s type inequalities for m􀀀 and (a;m)-geometrically convex functions, Konuralp Journal of Mathematics, 2(1), pp:90-101, 2014. CR - [12] M. E. Ozdemir, A. O. Akdemir and H. Kavurmacı, On the Simpson’s inequality for convex functions on the co-Ordinates, Turkish Journal of Analysis and Number Theory. 2014, 2(5), 165-169. CR - [13] M. Z. Sarikaya, E. Set and M. E. Ozdemir, On new inequalities of Simpson’s type for s-convex functions, Computers and Mathematics with Applications 60 (2010) 2191–2199. CR - [14] M.Z. Sarikaya, E. Set, M.E. Ozdemir, On new inequalities of Simpson’s type for convex functions, RGMIA Res. Rep. Coll. 13 (2) (2010) Article2. CR - [15] M. Z.Sarikaya, E. Set and M. E. Ozdemir, On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex, Journal of Applied Mathematics, Statistics and Informatics , 9 (2013), No. 1. CR - [16] M.Z. Sarıkaya, T. Tunc and H. Budak, Simpson’s type inequality for F-convex function, Facta Universitatis Ser. Math. Inform., Vol. 32, No 5 (2017), 747–753. CR - [17] E. Set, M. E. Ozdemir and M. Z. Sarikaya, On new inequalities of Simpson’s type for quasi-convex functions with applications, Tamkang Journal of Mathematics, 43 (2012), no. 3, 357–364. CR - [18] E. Set, M. Z. Sarikaya and N. Uygun, On new inequalities of Simpson’s type for generalized quasi-convex functions, Advances in Inequalities and Applications, 2017, 2017:3, pp:1-11. CR - [19] K. L. Tseng, G. S. Yang and S.S. Dragomir, On weighted Simpson type inequalities and applications Journal of mathematical inequalities, Vol. 1, number 1 (2007), 13–22. CR - [20] N. Ujevic, Double integral inequalities of Simpson type and applications, J. Appl. Math. Comput., 14 (2004), no:1-2, p. 213-223. CR - [21] Z.Q. Yang, Y.J. Li andT. Du, A generalization of Simpson type inequality via differentiable functions using (s;m)-convex functions, Ital. J. Pure Appl. Math. 35 (2015) 327–338. UR - https://dergipark.org.tr/en/pub/konuralpjournalmath/issue//539070 L1 - https://dergipark.org.tr/en/download/article-file/699894 ER -