TY - JOUR T1 - Borsuk-Ulam Theorem and Maximal Antipodal Sets of Compact Symmetric Spaces AU - Chen, Bang-yen PY - 2017 DA - October DO - 10.36890/iejg.545041 JF - International Electronic Journal of Geometry JO - Int. Electron. J. Geom. PB - Kazım İlarslan WT - DergiPark SN - 1307-5624 SP - 11 EP - 19 VL - 10 IS - 2 LA - en KW - Borsuk-Ulam theorem KW - maximal antipodal set KW - continuous function KW - 2-number KW - compact symmetric space CR - [1] Borel, A. and Serre, J.-P., Sur certains sousgroupes des groupes de Lie compacts. Comm. Math. Helv., 27 (1953), 128-139. CR - [2] Borsuk, K., Drei Satze uber die n-dimensionale euklidische Sphäre. Fund. Math., 20 (1933), 177-190. CR - [3] Burns, J. M., Homotopy of compact symmetric spaces. Glasgow Math. J., 34 (1992), no. 2, 221-228. CR - [4] Cartan, É. Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. France, 54 (1926), 214-264. CR - [5] Chen, B.-Y., Geometry of submanifolds. Marcel Dekker, New York, NY, 1973. CR - [6] Chen, B.-Y., A new approach to compact symmetric spaces and applications. A report on joint work with Professor T. Nagano. Katholieke Universiteit Leuven, Louvain, 1987. CR - [7] Chen, B.-Y., The 2-ranks of connected compact Lie groups. Taiwanese J. Math., 17 (2013), no. 3, 815-831. CR - [8] Chen, B.-Y., Two-numbers and their applications - a survey. preprint, 2017. CR - [9] Chen, B.-Y. and Nagano, T., Totally geodesic submanifolds of symmetric spaces. I. Duke Math. J., 44 (1977), 745-755. CR - [10] Chen, B.-Y. and Nagano, T., Totally geodesic submanifolds of symmetric spaces II. Duke Math. J., 45 (1978), no. 2, 405-425. CR - [11] Chen, B.-Y. and Nagano, T., Un invariant géométrique riemannien. C. R. Acad. Sci. Paris Sér. I Math., 295 (1982), no. 5, 389-391. CR - [12] Chen, B.-Y. and Nagano, T., A Riemannian geometric invariant and its applications to a problem of Borel and Serre. Trans. Amer. Math. Soc., 308 (1988), no. 1, 273-297. CR - [13] Console, S., Geodesics and moments maps of symmetric R-spaces. Dipartimento di Matematica - Universit‘a di Torino Quaderno N. 25. CR - [14] Helgason, S.. Differential geometry, Lie groups and symmetric spaces. Academic Press, New York, 1978. CR - [15] Ikawa, O., Tanaka, M. S. and Tasaki, H., The fixed point set of a holomorphic isometry, the intersection of two real forms in a Hermitian symmetric space of compact type and symmetric triads. Internat. J. Math., 26 (2015), no. 6, 1541005, 32 pp. CR - [16] Lyusternik, L. A. and Fet, A. I., Variational problems on closed manifolds. Doklady Akad. Nauk SSSR (N.S.), 81 (1951), 17-18. CR - [17] Lyusternik, L. A. and Shnirel’man, S., Topological Methods in Variational Problems. Trudy Inst. Math. Mech., Moscow State Univ, Moscow, 1930. CR - [18] Matou˘sek, J., Using the Borsuk-Ulam theorem. Springer-Verlag, Berlin, 2003. CR - [19] Nagano, T., The involutions of compact symmetric spaces. Tokyo J. Math., 11 (1988), 57-79. CR - [20] Nagano, T., The involutions of compact symmetric spaces, II. Tokyo J. Math. 15 (1992), 39-82. CR - [21] Rotman, J. J., An introduction to algebraic topology. Springer-Verlag, 1988. CR - [22] Sanchez, C. U., The invariant of Chen-Nagano on flag manifolds. Proc. Amer. Math. Soc., 118 (1993), no. 4, 1237-1242. CR - [23] Sanchez, C. U., The index number of an R-space: an extension of a result of M. Takeuchi’s. Proc. Amer. Math. Soc., 125 (1997), no. 3, 893-900. CR - [24] Sanchez, C. U. and Giunta, A., The projective rank of a Hermitian symmetric space: a geometric approach and consequences. Math. Ann., 323 (2002), no. 1, 55-79. CR - [25] Sanchez, C. U., Cali, A. L. and Moreschi, J. L., Spheres in Hermitian symmetric spaces and flag manifolds. Geom. Dedicata , 64 (1997), no. 3, 261-276. CR - [26] Steinlein, H., Borsuk’s antipodal theorem and its generalizations and applications: a survey. Méthodes topologiques en analyse non linéaire. Sém. Math. Supér. Montréal, Sém. Sci. OTAN (NATO Adv. Study Inst.), 95 (1985), 166-235. CR - [27] Takeuchi, M., Two-number of symmetric R-spaces. Nagoya Math. J., 115 (1989), 43-46. CR - [28] Tanaka, M. S., Antipodal sets of compact symmetric spaces and the intersection of totally geodesic submanifolds. Differential geometry of submanifolds and its related topics, 205-219, World Sci. Publ., 2014. CR - [29] Tanaka, M. S. and Tasaki, H., The intersection of two real forms in Hermitian symmetric spaces of compact type. J. Math. Soc. Japan, 64 (2012), no. 4, 1297-1332. CR - [30] Tanaka, M. S. and Tasaki, H., Antipodal sets of symmetric R-spaces. Osaka J. Math., 50 (2013), no. 1, 161-169. CR - [31] Tasaki, H., The intersection of two real forms in the complex hyperquadric. Tohoku Math. J., 62 (2010), no. 3, 375-382. CR - [32] Tasaki, H., Antipodal sets in oriented real Grassmann manifolds. Internat. J. Math., 24 (2013), no. 8, 1350061, 28 pp. CR - [33] Tasaki, H., Estimates of antipodal sets in oriented real Grassmann manifolds. Internat. J. Math., 26 (2015), no. 6, 1541008, 12 pp. UR - https://doi.org/10.36890/iejg.545041 L1 - https://dergipark.org.tr/en/download/article-file/680416 ER -