TY - JOUR T1 - Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space AU - Bekar, Murat PY - 2019 DA - March DO - 10.36890/iejg.545737 JF - International Electronic Journal of Geometry JO - Int. Electron. J. Geom. PB - Kazım İlarslan WT - DergiPark SN - 1307-5624 SP - 1 EP - 8 VL - 12 IS - 1 LA - en AB - In this paper, a one-to-one correspondence between the set of unit split semi-quaternions andunit tangent bundle of semi-Euclidean plane is given. It is shown that the set of unit split semiquaternionsbased on the group operation of multiplication is a Lie group. The Lie algebra ofthis group, consisting of the vector space matrix of the angular velocity vectors, is also considered.Planar rotations in Euclidean plane are expressed using split semi-quaternions. Some examples aregiven to illustrate the findings. KW - Lie algebra KW - pseudo-rotation (boost) KW - split semi-quaternion KW - unit tangent bundle CR - [1] Abłamowicz, R. and Sobczyk, G., Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Boston, 2004. CR - [2] Abłamowicz, R., Computations with Clifford and Grassmann Algebras, Adv. Appl. Clifford Algebras, 19 (2009), 499-545. CR - [3] Abłamowicz, R. and Fauser, B., On the Transposition Anti-Involution in Real Clifford Algebras I: The Transposition Map, Linear Multilinear A, 59 (2011), 1313-1358. CR - [4] Abłamowicz, R. and Fauser, B., On the Transposition Anti-Involution in Real Clifford Algebras II: Stabilizer Groups of Primitive Idempotents, Linear Multilinear A, 59 (2011), 1359-1381. CR - [5] Abłamowicz, R. and Fauser, B., On the Transposition Anti-Involution in Real Clifford Algebras III: The Automorphism Group of the Transposition Scalar Product on Spinor Spaces, Linear Multilinear A, 60 (2012), 621-644. CR - [6] Aslan, S. and Yayli, Y., Canal Surfaces with Quaternions, Adv. Appl. Clifford Algebras, 26 (2016), 31-38. CR - [7] Bekar, M. and Yayli, Y., Semi-Euclidean Quasi-Elliptic Planar Motion, Int. J. Geom. Methods Mod. Phys., 13 (2016), 1650089 (11 pages), DOI: 10.1142/S0219887816500894. CR - [8] Bekar, M. and Yayli, Y., Lie Aigebra of Unit Tangent Bundle, Adv. Appl. Clifford Algebras, 27 (2017), 965–975. CR - [9] Ell, T. A. and Sangwine, S. J., Quaternion Involutions and Anti-Involutions, Comput. Math. Appl., 53 (2007), 137-143. CR - [10] Es, H., First and Second Acceleration Poles in Lorentzian Homothetic Motions, Commun. Fac. Sci. Univ. Ank. Ser. A 1 Math. Stat., 67 (2018), 19-28. CR - [11] Hahn, A. J., Quadratic Algebras, Clifford Algebras and Arithmetic Witt Groups, Springer-Verlag, New York, 1994. CR - [12] Hamilton, W. R., On a New Species of Imaginary Quantities Connected with the Theory of Quaternions, P. Roy. Irish Academy, 2 (1844), 424-434. CR - [13] Jafari, M., Split Semi-Quaternions Algebra in Semi-Euclidean 4-Space, Cumhuriyet Science Journal, 36 36 (2015), 70–77. CR - [14] Kuipers, J. B., Quaternions and Rotation Sequences. Princeton University Press, New Jersey, 1999. CR - [15] Kula, L. and Yayli, Y., Split Quaternions and Rotations in Semi-Euclidean Space E^4_2 , J. Korean Math. Soc., 6 (2007), 1313-1327. CR - [16] Lopez, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, Int. Electron. J. Geom., 7 (2014), 44-107. CR - [17] Ward, J. P., Quaternions and Cayley Algebras and Applications, Kluwer Academic Publishers, Dordrecht, 1996. UR - https://doi.org/10.36890/iejg.545737 L1 - https://dergipark.org.tr/en/download/article-file/681602 ER -